Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(7)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37048165

RESUMO

The COVID-19 pandemic was triggered by the coronavirus SARS-CoV-2, whose peak occurred in the years 2020 and 2021. The main target of this virus is the lung, and the infection is associated with an accentuated inflammatory process involving mainly the innate arm of the immune system. Here, we described the induction of a pulmonary inflammatory process triggered by the intranasal (IN) instillation of UV-inactivated SARS-CoV-2 in C57BL/6 female mice, and then the evaluation of the ability of vitamin D (VitD) to control this process. The assays used to estimate the severity of lung involvement included the total and differential number of cells in the bronchoalveolar lavage fluid (BALF), histopathological analysis, quantification of T cell subsets, and inflammatory mediators by RT-PCR, cytokine quantification in lung homogenates, and flow cytometric analysis of cells recovered from lung parenchyma. The IN instillation of inactivated SARS-CoV-2 triggered a pulmonary inflammatory process, consisting of various cell types and mediators, resembling the typical inflammation found in transgenic mice infected with SARS-CoV-2. This inflammatory process was significantly decreased by the IN delivery of VitD, but not by its IP administration, suggesting that this hormone could have a therapeutic potential in COVID-19 if locally applied. To our knowledge, the local delivery of VitD to downmodulate lung inflammation in COVID-19 is an original proposition.


Assuntos
COVID-19 , Pneumonia , Camundongos , Animais , Feminino , Humanos , SARS-CoV-2 , Vitamina D/farmacologia , Pandemias , Camundongos Endogâmicos C57BL , Vitaminas , Camundongos Transgênicos
2.
Cells ; 12(5)2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36899820

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an exceptionally transmissible and pathogenic coronavirus that appeared at the end of 2019 and triggered a pandemic of acute respiratory disease, known as coronavirus disease 2019 (COVID-19). COVID-19 can evolve into a severe disease associated with immediate and delayed sequelae in different organs, including the central nervous system (CNS). A topic that deserves attention in this context is the complex relationship between SARS-CoV-2 infection and multiple sclerosis (MS). Here, we initially described the clinical and immunopathogenic characteristics of these two illnesses, accentuating the fact that COVID-19 can, in defined patients, reach the CNS, the target tissue of the MS autoimmune process. The well-known contribution of viral agents such as the Epstein-Barr virus and the postulated participation of SARS-CoV-2 as a risk factor for the triggering or worsening of MS are then described. We emphasize the contribution of vitamin D in this scenario, considering its relevance in the susceptibility, severity and control of both pathologies. Finally, we discuss the experimental animal models that could be explored to better understand the complex interplay of these two diseases, including the possible use of vitamin D as an adjunct immunomodulator to treat them.


Assuntos
COVID-19 , Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Animais , SARS-CoV-2 , Herpesvirus Humano 4 , Vitamina D
3.
Int J Mol Sci ; 22(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671896

RESUMO

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS). MS and its animal model called experimental autoimmune encephalomyelitis (EAE) immunopathogenesis involve a plethora of immune cells whose activation releases a variety of proinflammatory mediators and free radicals. Vitamin D3 (VitD) is endowed with immunomodulatory and antioxidant properties that we demonstrated to control EAE development. However, this protective effect triggered hypercalcemia. As such, we compared the therapeutic potential of VitD and paricalcitol (Pari), which is a non-hypercalcemic vitamin D analog, to control EAE. From the seventh day on after EAE induction, mice were injected with VitD or Pari every other day. VitD, but not Pari, displayed downmodulatory ability being able to reduce the recruitment of inflammatory cells, the mRNA expression of inflammatory parameters, and demyelination at the CNS. Lower production of proinflammatory cytokines by lymph node-derived cells and IL-17 by gut explants, and reduced intestinal inflammation were detected in the EAE/VitD group compared to the EAE untreated or Pari groups. Dendritic cells (DCs) differentiated in the presence of VitD developed a more tolerogenic phenotype than in the presence of Pari. These findings suggest that VitD, but not Pari, has the potential to be used as a preventive therapy to control MS severity.


Assuntos
Antioxidantes/administração & dosagem , Colecalciferol/administração & dosagem , Encefalomielite Autoimune Experimental/prevenção & controle , Ergocalciferóis/administração & dosagem , Fatores Imunológicos/administração & dosagem , Profilaxia Pós-Exposição/métodos , Animais , Antioxidantes/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Colecalciferol/farmacologia , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/imunologia , Ergocalciferóis/farmacologia , Feminino , Fatores Imunológicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Esclerose Múltipla/prevenção & controle , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
4.
J Leukoc Biol ; 106(3): 501-503, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31369695

RESUMO

Discussion on changes in gut microbiota driving the breakdown of mucosal barrier in NOD mice; the resulting inflammation and impairment of oral tolerance induces the autoimmune diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Animais , Camundongos , Camundongos Endogâmicos NOD , Mucosa
5.
Hum Vaccin Immunother ; 13(5): 1040-1050, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28059670

RESUMO

Previously we showed that 65-kDa Mycobacterium leprae heat shock protein (Hsp65) is a target for the development of a tuberculosis vaccine. Here we evaluated peripheral blood mononuclear cells (PBMC) from healthy individuals or tuberculosis patients stimulated with two forms of Hsp65 antigen, recombinant DNA that encodes Hsp65 (DNA-HSP65) or recombinant Hsp65 protein (rHsp65) in attempting to mimic a prophylactic or therapeutic study in vitro, respectively. Proliferation and cytokine-producing CD4+ or CD8+ cell were assessed by flow cytometry. The CD4+ cell proliferation from healthy individuals was stimulated by DNA-HSP65 and rHsp65, while CD8+ cell proliferation from healthy individuals or tuberculosis patients was stimulated by rHSP65. DNA-HSP65 did not improve the frequency of IFN-gamma+ cells from healthy individuals or tuberculosis patients. Furthermore, we found an increase in the frequency of IL-10-producing cells in both groups. These findings show that Hsp65 antigen activates human lymphocytes and plays an immune regulatory role that should be addressed as an additional antigen for the development of antigen-combined therapies.


Assuntos
Proteínas de Bactérias/imunologia , Chaperonina 60/imunologia , Imunidade Celular , Ativação Linfocitária , Tuberculose/imunologia , Adulto , Proteínas de Bactérias/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Chaperonina 60/genética , Citotoxicidade Imunológica , Feminino , Voluntários Saudáveis , Humanos , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-10/biossíntese , Interleucina-10/imunologia , Leucócitos Mononucleares/imunologia , Macrófagos Alveolares/imunologia , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Proteínas Recombinantes/imunologia , Vacinas contra a Tuberculose/imunologia , Regulação para Cima , Vacinas de DNA/farmacologia , Adulto Jovem
6.
Cell ; 163(2): 354-66, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26451485

RESUMO

Infections have been proposed as initiating factors for inflammatory disorders; however, identifying associations between defined infectious agents and the initiation of chronic disease has remained elusive. Here, we report that a single acute infection can have dramatic and long-term consequences for tissue-specific immunity. Following clearance of Yersinia pseudotuberculosis, sustained inflammation and associated lymphatic leakage in the mesenteric adipose tissue deviates migratory dendritic cells to the adipose compartment, thereby preventing their accumulation in the mesenteric lymph node. As a consequence, canonical mucosal immune functions, including tolerance and protective immunity, are persistently compromised. Post-resolution of infection, signals derived from the microbiota maintain inflammatory mesentery remodeling and consequently, transient ablation of the microbiota restores mucosal immunity. Our results indicate that persistent disruption of communication between tissues and the immune system following clearance of an acute infection represents an inflection point beyond which tissue homeostasis and immunity is compromised for the long-term. VIDEO ABSTRACT.


Assuntos
Microbioma Gastrointestinal , Doenças do Sistema Imunitário/microbiologia , Doenças do Sistema Imunitário/patologia , Doenças Linfáticas/patologia , Infecções por Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/fisiologia , Movimento Celular , Doença Crônica , Células Dendríticas/patologia , Feminino , Humanos , Doenças Linfáticas/microbiologia , Tecido Linfoide/imunologia , Tecido Linfoide/patologia , Masculino , Mesentério/imunologia , Mesentério/patologia , Organismos Livres de Patógenos Específicos , Infecções por Yersinia pseudotuberculosis/patologia
7.
Immunology ; 121(4): 508-17, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17433075

RESUMO

The results of various animal model studies of tuberculosis (TB) suggest that culture filtrate proteins (CFPs), which are antigens secreted by Mycobacterium tuberculosis, are largely responsible for improvements in TB vaccines. The great obstacle to developing protein subunit vaccines is that adjuvants are required in order to stimulate relevant protective immune responses. Acting as immune adjuvants, CpG-oligodeoxynucleotides (CpG-ODNs) promote the activation of Th1 cells and of pro-inflammatory cytokines. To evaluate the adjuvant role of CpG-ODNs in conferring enhanced immunogenic capacity and protection against M. tuberculosis, we immunized mice with CFP antigen combined with synthetic CpG-ODNs (CFP/CpG) or with incomplete Freund's adjuvant (IFA) (CFP/IFA). Immunization with CFP/CpG induced a T helper 1 (Th1)-biased response accompanied by a higher immunoglobulin G2a (IgG2a) antibody/IgG1 antibody ratio, elevated production of interferon-gamma (IFN-gamma) by spleen cells and in lungs. However, CFP/IFA-immunized mice presented higher levels of IgG1 antibodies, as well as increased production of IFN-gamma, interleukin (IL)-5, and IL-10 by spleen cells, together with lower levels of IFN-gamma in the lungs. Despite the stronger Th1 response seen in both groups, believed to be necessary for protection against TB, only mice immunized with CFP/IFA were protected after M. tuberculosis infection. Lung histology revealed that lung parenchyma were better preserved in CFP/IFA-immunized mice, which also presented intense lymphocyte recruitment to the lesion, whereas CFP/CpG-immunized mice presented severe pulmonary injury accompanied by necrosis. Based on the data presented, we discuss the widely accepted paradigm that high levels of IFN-gamma are directly correlated with protection against experimental TB.


Assuntos
Proteínas de Bactérias/imunologia , Interferon gama/biossíntese , Oligodesoxirribonucleotídeos/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/prevenção & controle , Adjuvantes Imunológicos , Animais , Feminino , Adjuvante de Freund , Imunização , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células Th1/imunologia , Células Th2/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...