Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Anticancer Drugs ; 32(2): 111-116, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395068

RESUMO

Sodium dichloroacetate (DCA) is a metabolic regulator used to treat diabetes. Since DCA inhibits pyruvate dehydrogenase kinase, decreasing lactic acid formation, it can reverse the Warburg effect in cancer cells, promoting apoptosis. Therefore, this study aimed to investigate the potential of DCA as a drug repurposing candidate for the treatment of melanoma. For the in-vitro assay, murine B16-F10 melanoma cells were treated with 0.5, 1, 5, 10, 20 or 50 mM DCA for 3 days, analyzed with the crystal violet method. The in-vivo effect of DCA was evaluated in B16-F10 tumor-bearing C57BL/6 mice treated with different doses of DCA (0, 25, 75 or 150 mg/kg) by gavage for 10 days, followed by measurement of tumor volume. Upon necropsy, representative slices of lung, liver, kidney, spleen and intestine were collected, processed and submitted for histopathological examination. The DCA concentrations of 10, 20 and 50 mM reduced B16-F10 cell viability after 48 and 72 h of treatment, whereas 20 and 50 mM were effective after 24 h of treatment. A significant reduction in tumor growth was observed in B16-F10 melanoma bearing mice at all doses, with no change in body weight or histology. DCA attenuates the growth of B16-F10 melanoma in vitro and in vivo, without systemic toxic effects. Therefore, DCA is a candidate for drug repurposing against melanomas.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácido Dicloroacético/farmacologia , Ácido Dicloroacético/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Dicloroacético/administração & dosagem , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Carga Tumoral/efeitos dos fármacos
2.
PLoS One ; 12(9): e0184228, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28945747

RESUMO

There are many factors which make canine cancer like cancer in humans. The occurrence of spontaneous mammary tumors in pet dogs, tumor genetics, molecular targets and exposure to the same environmental risk factors are among these factors. Therefore, the study of canine cancer can provide useful information to the oncology field. This study aimed to establish and characterize a panel of primary mixed cell cultures obtained from spontaneous canine mammary tumors. Eight established cell cultures obtained from one normal mammary gland, one complex adenoma, one mixed adenoma, two complex carcinomas and two mixed carcinomas were analyzed. The gene expression levels of classic molecular cancer players such as fibroblast growth factor receptor (FGFR) 2, breast cancer (BRCA) 1, BRCA2 and estrogen receptor (ESR) 1 were evaluated. For the first time, three orphan nuclear receptors, estrogen-related receptors (ERRs) α, ß and γ were studied in canine mammary cancer. The highest expression level of ERRα was observed in complex carcinoma-derived cell culture, while the highest levels of ERRß and γ were observed in cells derived from a mixed carcinoma. Meanwhile, complex carcinomas presented the highest levels of expression of ESR1, BRCA1 and FGFR2 among all samples. BRCA2 was found exclusively in complex adenoma. The transcription factor GATA3 had its highest levels in mixed carcinoma samples and its lowest levels in complex adenoma. Proliferation assays were also performed to evaluate the mixed cell cultures response to ER ligands, genistein and DES, both in normoxia and hypoxic conditions. Our results demonstrate that morphological and functional studies of primary mixed cell cultures derived from spontaneous canine mammary tumors are possible and provide valuable tool for the study of various stages of mammary cancer development.


Assuntos
Doenças do Cão/metabolismo , Neoplasias Mamárias Animais/metabolismo , Animais , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Cães , Receptor alfa de Estrogênio/metabolismo , Feminino , Citometria de Fluxo , Ploidias , Cultura Primária de Células , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
3.
J Am Soc Nephrol ; 20(11): 2389-402, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19833899

RESUMO

Mutations in PKD1 cause the majority of cases of autosomal dominant polycystic kidney disease (ADPKD). Because polycystin 1 modulates cell proliferation, cell differentiation, and apoptosis, its lower biologic activity observed in ADPKD might influence the degree of injury after renal ischemia/reperfusion. We induced renal ischemia/reperfusion in 10- to 12-wk-old male noncystic Pkd1(+/-) and wild-type mice. Compared with wild-type mice, heterozygous mice had higher fractional excretions of sodium and potassium and higher serum creatinine after 48 h. In addition, in heterozygous mice, also cortical damage, rates of apoptosis, and inflammatory infiltration into the interstitium at time points out to 14 d after injury all increased, as well as cell proliferation at 48 h and 7 d. The mRNA and protein expression of p21 was lower in heterozygous mice than wild-type mice at 48 h. After 6 wk, we observed dilated tubules, microcysts, and increased renal fibrosis in heterozygotes. The early mortality of heterozygotes was significantly higher than that of wild-type mice when we extended the duration of ischemia from 32 to 35 min. In conclusion, ischemia/reperfusion induces a more severe injury in kidneys of Pkd1-haploinsufficient mice, a process that apparently depends on a relative deficiency of p21 activity, tubular dilation, and microcyst formation. These data suggest the possibility that humans with ADPKD from PKD1 mutations may be at greater risk for damage from renal ischemia/reperfusion injury.


Assuntos
Doenças Renais Císticas/etiologia , Nefropatias/etiologia , Mutação , Traumatismo por Reperfusão/complicações , Canais de Cátion TRPP/genética , Animais , Masculino , Camundongos , Camundongos Mutantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...