Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(1): 274-299, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804484

RESUMO

Catharanthus roseus leaves produce a range of monoterpenoid indole alkaloids (MIAs) that include low levels of the anticancer drugs vinblastine and vincristine. The MIA pathway displays a complex architecture spanning different subcellular and cell type localizations, and is under complex regulation. As a result, the development of strategies to increase the levels of the anticancer MIAs has remained elusive. The pathway involves mesophyll specialized idioblasts where the late unsolved biosynthetic steps are thought to occur. Here, protoplasts of C. roseus leaf idioblasts were isolated by fluorescence-activated cell sorting, and their differential alkaloid and transcriptomic profiles were characterized. This involved the assembly of an improved C. roseus transcriptome from short- and long-read data, IDIO+. It was observed that C. roseus mesophyll idioblasts possess a distinctive transcriptomic profile associated with protection against biotic and abiotic stresses, and indicative that this cell type is a carbon sink, in contrast to surrounding mesophyll cells. Moreover, it is shown that idioblasts are a hotspot of alkaloid accumulation, suggesting that their transcriptome may hold the key to the in-depth understanding of the MIA pathway and the success of strategies leading to higher levels of the anticancer drugs.


Assuntos
Antineoplásicos , Catharanthus , Plantas Medicinais , Alcaloides de Triptamina e Secologanina , Plantas Medicinais/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Antineoplásicos/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Cancers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35565346

RESUMO

Notwithstanding the advances in the treatment of lung cancer with immune checkpoint inhibitors, the high percentage of non-responders supports the development of novel anticancer treatments. Herein, the expression of the onco-target nucleolin in patient-derived pulmonary carcinomas was characterized, along with the assessment of its potential as a therapeutic target. The clinical prognostic value of nucleolin for human pulmonary carcinomas was evaluated through data mining from the Cancer Genome Atlas project and immunohistochemical detection in human samples. Cell surface expression of nucleolin was evaluated by flow cytometry and subcellular fraction Western blotting in lung cancer cell lines. Nucleolin mRNA overexpression correlated with poor overall survival of lung adenocarcinoma cancer patients and further predicted the disease progression of both lung adenocarcinoma and squamous carcinoma. Furthermore, a third of the cases presented extra-nuclear expression, contrasting with the nucleolar pattern in non-malignant tissues. A two- to twelve-fold improvement in cytotoxicity, subsequent to internalization into the lung cancer cell lines of doxorubicin-loaded liposomes functionalized by the nucleolin-binding F3 peptide, was correlated with the nucleolin cell surface levels and the corresponding extent of cell binding. Overall, the results suggested nucleolin overexpression as a poor prognosis predictor and thus a target for therapeutic intervention in lung cancer.

7.
Mol Ecol Resour ; 22(6): 2232-2247, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35305077

RESUMO

Traditional detection of aquatic invasive species via morphological identification is often time-consuming and can require a high level of taxonomic expertise, leading to delayed mitigation responses. Environmental DNA (eDNA) detection approaches of multiple species using Illumina-based sequencing technology have been used to overcome these hindrances, but sample processing is often lengthy. More recently, portable nanopore sequencing technology has become available, which has the potential to make molecular detection of invasive species more widely accessible and substantially decrease sample turnaround times. However, nanopore-sequenced reads have a much higher error rate than those produced by Illumina platforms, which has so far hindered the adoption of this technology. We provide a detailed laboratory protocol and bioinformatic tools (msi package) to increase the reliability of nanopore sequencing to detect invasive species, and we test its application using invasive bivalves while comparing it with Illumina-based sequencing. We sampled water from sites with pre-existing bivalve occurrence and abundance data, and contrasting bivalve communities, in Italy and Portugal. Samples were extracted, amplified, and sequenced by the two platforms. The mean agreement between sequencing methods was 69% and the difference between methods was nonsignificant. The lack of detections of some species at some sites could be explained by their known low abundances. This is the first reported use of MinION to detect aquatic invasive species from eDNA samples.


Assuntos
Bivalves , DNA Ambiental , Nanoporos , Animais , Bivalves/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Espécies Introduzidas , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos
8.
Eur J Pharm Biopharm ; 172: 61-77, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35104605

RESUMO

One of the major assets of anticancer nanomedicine is the ability to co-deliver drug combinations, as it enables targeting of different cellular populations and/or signaling pathways implicated in tumorigenesis and thus tackling tumor heterogeneity. Moreover, drug resistance can be circumvented, for example, upon co-encapsulation and delivery of doxorubicin and sphingolipids, as ceramides. Herein, the impact of short (C6) and long (C18) alkyl chain length ceramides on the nature of drug interaction, within the scope of combination with doxorubicin, was performed in bulk triple-negative breast cancer (TNBC) cells, as well as on the density of putative cancer stem cells and phenotype, including live single-cell tracking. C6- or C18-ceramide enabled a synergistic drug interaction in all conditions and (bulk) cell lines tested. However, differentiation among these two ceramides was reflected on the migratory potential of cancer cells, particularly significant against the highly motile MDA-MB-231 cells. This effect was supported by the downregulation of the PI3K/Akt pathway enabled by C6-ceramide and in contrast with C18-ceramide. The decrease of the migratory potential enabled by the targeted liposomal combinations is of high relevance in the context of TNBC, due to the underlying metastatic potential. Surprisingly, the nature of the drug interaction assessed at the level of bulk cancer cells revealed to be insufficient to predict whether a drug combination enables a decrease in the percentage of the master regulators of tumor relapse as ALDH+/high putative TNBC cancer stem cells, suggesting, for the first time, that it should be extended further down to this level.


Assuntos
Doxorrubicina , Fosfatidilinositol 3-Quinases , Apoptose , Linhagem Celular Tumoral , Ceramidas , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Interações Medicamentosas , Humanos , Fosfatidilinositol 3-Quinases/farmacologia , Polietilenoglicóis
9.
Drug Deliv Transl Res ; 12(3): 629-646, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33860446

RESUMO

Strategies targeting nucleolin have enabled a significant improvement in intracellular bioavailability of their encapsulated payloads. In this respect, assessment of the impact of target cell heterogeneity and nucleolin homology across species (structurally and functionally) is of major importance. This work also aimed at mathematically modelling the nucleolin expression levels at the cell membrane, binding and internalization of pH-sensitive pegylated liposomes encapsulating doxorubicin and functionalized with the nucleolin-binding F3 peptide (PEGASEMP), and resulting cytotoxicity against cancer cells from mouse, rat, canine, and human origin. Herein, it was shown that nucleolin expression levels were not a limitation on the continuous internalization of F3 peptide-targeted liposomes, despite the saturable nature of the binding mechanism. Modeling enabled the prediction of nucleolin-mediated total doxorubicin exposure provided by the experimental settings of the assessment of PEGASEMP's impact on cell death. The former increased proportionally with nucleolin-binding sites, a measure relevant for patient stratification. This pattern of variation was observed for the resulting cell death in nonsaturating conditions, depending on the cancer cell sensitivity to doxorubicin. This approach differs from standard determination of cytotoxic concentrations, which normally report values of incubation doses rather than the actual intracellular bioactive drug exposure. Importantly, in the context of development of nucleolin-based targeted drug delivery, the structural nucleolin homology (higher than 84%) and functional similarity across species presented herein, emphasized the potential to use toxicological data and other metrics from lower species to infer the dose for a first-in-human trial.


Assuntos
Doxorrubicina , Lipossomos , Animais , Linhagem Celular Tumoral , Cães , Doxorrubicina/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Camundongos , Peptídeos/química , Fosfoproteínas , Polietilenoglicóis , Proteínas de Ligação a RNA , Ratos , Nucleolina
10.
Cancers (Basel) ; 13(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207464

RESUMO

Targeting multiple cellular populations is of high therapeutic relevance for the tackling of solid tumors heterogeneity. Herein, the ability of pegylated and pH-sensitive liposomes, functionalized with the nucleolin-binding F3 peptide and containing doxorubicin (DXR)/C6-ceramide synergistic combination, to target, in vitro, ovarian cancer, including ovarian cancer stem cells (CSC), was assessed. The underlying molecular mechanism of action of the nucleolin-mediated intracellular delivery of C6-ceramide to cancer cells was also explored. The assessment of overexpression of surface nucleolin expression by flow cytometry was critical to dissipate differences identified by Western blot in membrane/cytoplasm of SKOV-3, OVCAR-3 and TOV-112D ovarian cancer cell lines. The former was in line with the significant extent of uptake into (bulk) ovarian cancer cells, relative to non-targeted and non-specific counterparts. This pattern of uptake was recapitulated with putative CSC-enriched ovarian SKOV-3 and OVCAR-3 sub-population (EpCAMhigh/CD44high). Co-encapsulation of DXR:C6-ceramide into F3 peptide-targeted liposomes improved cytotoxic activity relative to liposomes containing DXR alone, in an extent that depended on the intrinsic resistance to DXR and on the incubation time. The enhanced cytotoxicity of the targeted combination was mechanistically supported by the downregulation of PI3K/Akt pathway by C6-ceramide, only among the nucleolin-overexpressing cancer cells presenting a basal p-Akt/total Akt ratio lower than 1.

11.
J Exp Clin Cancer Res ; 40(1): 180, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078433

RESUMO

BACKGROUND: Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Nucleolin (NCL) is a protein overexpressed and partially localized on the cell surface of tumor cells of adult cancers. Little is known about NCL and pediatric tumors and nothing is reported about cell surface NCL and NB. METHODS: NB cell lines, Schwannian stroma-poor NB tumors and bone marrow (BM)-infiltrating NB cells were evaluated for the expression of cell surface NCL by Flow Cytometry, Imaging Flow Cytometry and Immunohistochemistry analyses. The cytotoxic activity of doxorubicin (DXR)-loaded nanocarriers decorated with the NCL-recognizing F3 peptide (T-DXR) was evaluated in terms of inhibition of NB cell proliferation and induction of cell death in vitro, whereas metastatic and orthotopic animal models of NB were used to examine their in vivo anti-tumor potential. RESULTS: NB cell lines, NB tumor cells (including patient-derived and Patient-Derived Xenografts-PDX) and 70% of BM-infiltrating NB cells show cell surface NCL expression. NCL staining was evident on both tumor and endothelial tumor cells in NB xenografts. F3 peptide-targeted nanoparticles, co-localizing with cell surface NCL, strongly associates with NB cells showing selective tumor cell internalization. T-DXR result significantly more effective, in terms of inhibition of cell proliferation and reduction of cell viability in vitro, and in terms of delay of tumor growth in all NB animal model tested, when compared to both control mice and those treated with the untargeted formulation. CONCLUSIONS: Our findings demonstrate that NCL could represent an innovative therapeutic cellular target for NB.


Assuntos
Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Neuroblastoma/tratamento farmacológico , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Xenoenxertos , Humanos , Lipossomos/química , Lipossomos/farmacologia , Camundongos , Nanopartículas/química , Neuroblastoma/genética , Neuroblastoma/patologia , Peptídeos/química , Peptídeos/genética , Peptídeos/farmacologia , Nucleolina
12.
Microorganisms ; 9(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33803052

RESUMO

The recent report of distinct Xanthomonas lineages of Xanthomonas arboricola pv. juglandis and Xanthomonas euroxanthea within the same walnut tree revealed that this consortium of walnut-associated Xanthomonas includes both pathogenic and nonpathogenic strains. As the implications of this co-colonization are still poorly understood, in order to unveil niche-specific adaptations, the genomes of three X. euroxanthea strains (CPBF 367, CPBF 424T, and CPBF 426) and of an X. arboricola pv. juglandis strain (CPBF 427) isolated from a single walnut tree in Loures (Portugal) were sequenced with two different technologies, Illumina and Nanopore, to provide consistent single scaffold chromosomal sequences. General genomic features showed that CPBF 427 has a genome similar to other X. arboricola pv. juglandis strains, regarding its size, number, and content of CDSs, while X. euroxanthea strains show a reduction regarding these features comparatively to X. arboricola pv. juglandis strains. Whole genome comparisons revealed remarkable genomic differences between X. arboricola pv. juglandis and X. euroxanthea strains, which translates into different pathogenicity and virulence features, namely regarding type 3 secretion system and its effectors and other secretory systems, chemotaxis-related proteins, and extracellular enzymes. Altogether, the distinct genomic repertoire of X. euroxanthea may be particularly useful to address pathogenicity emergence and evolution in walnut-associated Xanthomonas.

13.
Microbiol Resour Announc ; 10(10)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707324

RESUMO

We report the genome sequence of Xanthomonas arboricola pv. juglandis strain CPBF 427, which was isolated from early-season buds of a diseased walnut tree, suggesting overwinter potential. This study provides a consistent genomic reference for this pathovar and may contribute to addressing the overwinter survival of these walnut pathogens.

14.
Nat Commun ; 12(1): 1137, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602918

RESUMO

Adjuvant systemic therapies are now routinely used following resection of stage III melanoma, however accurate prognostic information is needed to better stratify patients. We use differential expression analyses of primary tumours from 204 RNA-sequenced melanomas within a large adjuvant trial, identifying a 121 metastasis-associated gene signature. This signature strongly associated with progression-free (HR = 1.63, p = 5.24 × 10-5) and overall survival (HR = 1.61, p = 1.67 × 10-4), was validated in 175 regional lymph nodes metastasis as well as two externally ascertained datasets. The machine learning classification models trained using the signature genes performed significantly better in predicting metastases than models trained with clinical covariates (pAUROC = 7.03 × 10-4), or published prognostic signatures (pAUROC < 0.05). The signature score negatively correlated with measures of immune cell infiltration (ρ = -0.75, p < 2.2 × 10-16), with a higher score representing reduced lymphocyte infiltration and a higher 5-year risk of death in stage II melanoma. Our expression signature identifies melanoma patients at higher risk of metastases and warrants further evaluation in adjuvant clinical trials.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Bases de Dados Genéticas , Humanos , Aprendizado de Máquina , Análise Multivariada , Estadiamento de Neoplasias , Prognóstico , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes , Fatores de Tempo , Resultado do Tratamento
15.
Adv Exp Med Biol ; 1295: 271-299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33543464

RESUMO

Multiple studies about tumor biology have revealed the determinant role of the tumor microenvironment in cancer progression, resulting from the dynamic interactions between tumor cells and surrounding stromal cells within the extracellular matrix. This malignant microenvironment highly impacts the efficacy of anticancer nanoparticles by displaying drug resistance mechanisms, as well as intrinsic physical and biochemical barriers, which hamper their intratumoral accumulation and biological activity.Currently, two-dimensional cell cultures are used as the initial screening method in vitro for testing cytotoxic nanocarriers. However, this fails to mimic the tumor heterogeneity, as well as the three-dimensional tumor architecture and pathophysiological barriers, leading to an inaccurate pharmacological evaluation.Biomimetic 3D in vitro tumor models, on the other hand, are emerging as promising tools for more accurately assessing nanoparticle activity, owing to their ability to recapitulate certain features of the tumor microenvironment and thus provide mechanistic insights into nanocarrier intratumoral penetration and diffusion rates.Notwithstanding, in vivo validation of nanomedicines remains irreplaceable at the preclinical stage, and a vast variety of more advanced in vivo tumor models is currently available. Such complex animal models (e.g., genetically engineered mice and patient-derived xenografts) are capable of better predicting nanocarrier clinical efficiency, as they closely resemble the heterogeneity of the human tumor microenvironment.Herein, the development of physiologically more relevant in vitro and in vivo tumor models for the preclinical evaluation of anticancer nanoparticles will be discussed, as well as the current limitations and future challenges in clinical translation.


Assuntos
Antineoplásicos , Nanopartículas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanomedicina , Esferoides Celulares , Microambiente Tumoral
16.
Microorganisms ; 9(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503840

RESUMO

The continuous characterization of genome-wide diversity in population and case-cohort samples, allied to the development of new algorithms, are shedding light on host ancestry impact and selection events on various infectious diseases. Especially interesting are the long-standing associations between humans and certain bacteria, such as the case of Helicobacter pylori, which could have been strong drivers of adaptation leading to coevolution. Some evidence on admixed gastric cancer cohorts have been suggested as supporting Homo-Helicobacter coevolution, but reliable experimental data that control both the bacterium and the host ancestries are lacking. Here, we conducted the first in vitro coinfection assays with dual human- and bacterium-matched and -mismatched ancestries, in African and European backgrounds, to evaluate the genome wide gene expression host response to H. pylori. Our results showed that: (1) the host response to H. pylori infection was greatly shaped by the human ancestry, with variability on innate immune system and metabolism; (2) African human ancestry showed signs of coevolution with H. pylori while European ancestry appeared to be maladapted; and (3) mismatched ancestry did not seem to be an important differentiator of gene expression at the initial stages of infection as assayed here.

17.
Microbiol Resour Announc ; 9(45)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154004

RESUMO

We present the complete genome sequences of two Xanthomonas euroxanthea strains isolated from buds of a walnut tree. The whole-genome sequences of strains CPBF 367 and CPBF 426 consist of two circular chromosomes of 4,923,218 bp and 4,883,254 bp and two putative plasmids of 45,241 bp and 17,394 bp, respectively. These data may contribute to the understanding of Xanthomonas species-specific adaptations to walnut.

18.
Front Immunol ; 11: 1470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760401

RESUMO

A better understanding of the response against Tuberculosis (TB) infection is required to accurately identify the individuals with an active or a latent TB infection (LTBI) and also those LTBI patients at higher risk of developing active TB. In this work, we have used the information obtained from studying the gene expression profile of active TB patients and their infected -LTBI- or uninfected -NoTBI- contacts, recruited in Spain and Mozambique, to build a class-prediction model that identifies individuals with a TB infection profile. Following this approach, we have identified several genes and metabolic pathways that provide important information of the immune mechanisms triggered against TB infection. As a novelty of our work, a combination of this class-prediction model and the direct measurement of different immunological parameters, was used to identify a subset of LTBI contacts (called TB-like) whose transcriptional and immunological profiles are suggestive of infection with a higher probability of developing active TB. Validation of this novel approach to identifying LTBI individuals with the highest risk of active TB disease merits further longitudinal studies on larger cohorts in TB endemic areas.


Assuntos
Tuberculose Latente/diagnóstico , Modelos Imunológicos , Análise de Sequência de RNA/métodos , Linfócitos T/imunologia , Tuberculose/diagnóstico , Doença Aguda , Adulto , Idoso , Células Cultivadas , Progressão da Doença , Feminino , Humanos , Interferon gama/metabolismo , Tuberculose Latente/genética , Tuberculose Latente/imunologia , Ativação Linfocitária , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Tuberculose/genética , Tuberculose/imunologia
19.
Microorganisms ; 8(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781641

RESUMO

The human gastrointestinal tract harbors approximately 100 trillion microorganisms with different microbial compositions across geographic locations. In this work, we used RNASeq data from stomach samples of non-disease (164 individuals from European ancestry) and gastric cancer patients (137 from Europe and Asia) from public databases. Although these data were intended to characterize the human expression profiles, they allowed for a reliable inference of the microbiome composition, as confirmed from measures such as the genus coverage, richness and evenness. The microbiome diversity (weighted UniFrac distances) in gastric cancer mimics host diversity across the world, with European gastric microbiome profiles clustering together, distinct from Asian ones. Despite the confirmed loss of microbiome diversity from a healthy status to a cancer status, the structured profile was still recognized in the disease condition. In concordance with the parallel host-bacteria population structure, we found 16 human loci (non-synonymous variants) in the European-descendent cohorts that were significantly associated with specific genera abundance. These microbiome quantitative trait loci display heterogeneity between population groups, being mainly linked to the immune system or cellular features that may play a role in enabling microbe colonization and inflammation.

20.
Biodivers Data J ; 8: e55137, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821214

RESUMO

BACKGROUND: The use of DNA barcoding allows unprecedented advances in biodiversity assessments and monitoring schemes of freshwater ecosystems; nevertheless, it requires the construction of comprehensive reference collections of DNA sequences that represent the existing biodiversity. Plecoptera are considered particularly good ecological indicators and one of the most endangered groups of insects, but very limited information on their DNA barcodes is available in public databases. Currently, less than 50% of the Iberian species are represented in BOLD. NEW INFORMATION: The InBIO Barcoding Initiative Database: contribution to the knowledge on DNA barcodes of Iberian Plecoptera dataset contains records of 71 specimens of Plecoptera. All specimens have been morphologically identified to species level and belong to 29 species in total. This dataset contributes to the knowledge on the DNA barcodes and distribution of Plecoptera from the Iberian Peninsula and it is one of the IBI database public releases that makes available genetic and distribution data for a series of taxa.The species represented in this dataset correspond to an addition to public databases of 17 species and 21 BINs. Fifty-eight specimens were collected in Portugal and 18 in Spain during the period of 2004 to 2018. All specimens are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources and their DNA barcodes are publicly available in the Barcode of Life Data System (BOLD) online database. The distribution dataset can be freely accessed through the Global Biodiversity Information Facility (GBIF).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...