Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 344: 118173, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336017

RESUMO

The quality of life and human survival is dependent on sustainable development and sanitation of water bodies in an environment. The present research focuses on cyclicity data of more than 750,000 records of parameters associated with the water quality from a rural-urban river monitoring stations in real-time from River Atoyac in Central Mexico. The events detected in the instrumental records correlated with 2528 laboratory and instrumental determinations. The 64 polluting compounds were grouped into inorganic compounds (metals and metalloids) and organic compounds (pesticides, herbicides, hydrocarbons). Metal associated compounds were grouped along mechanical, pharmaceutical and textile industries which associates itself with the entry of polluting components. The cyclicity of the events was detected through Discrete Fourier Transformation time series analysis identifying the predominant events in each station. These highlight the events at 23-26 h corresponding to a circadian pattern of the metabolism of the city. Likewise, pollution signals were detected at 3.3, 5.5, and 12-14 h, associated with discharges from economic activities. Multivariate statistical techniques were used to identify the circadian extremes of a regionalized cycle of polluting compounds in each of the stations. The results of this research allow pollution prevention using a mathematical analysis of time series of different quality parameters collected at monitoring stations in real-time as a tool for predicting polluting events. The DFT analysis makes it possible to prevent polluting events in different bodies of water, allowing to support the development of public policies based on the supervision and control of pollution.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Rios , Análise de Fourier , México , Qualidade de Vida , Poluentes Químicos da Água/análise
2.
Appl Opt ; 45(21): 5391-403, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16826276

RESUMO

The wavelength conversion of picosecond optical pulses based on the cascaded second-harmonic generation-difference-frequency generation process in a MgO-doped periodically poled lithium niobate waveguide is studied both experimentally and theoretically. In the experiments, the picosecond pulses are generated from a 40 GHz mode-locked fiber laser and two tunable filters, with which the lasing wavelength can be tuned from 1530 to 1570 nm, and the pulse width can be tuned from 2 to 7 ps. New-frequency pulses, i.e., converted pulses, are generated when the picosecond pulse train and a cw wave interact in the waveguide. The conversion characteristics are systematically investigated when the pulsed and cw waves are alternatively taken as the pump at the quasi-phase-matching wavelength of the device. In particular, the conversion dependences on input pulse width, average power, and pump wavelength are examined quantitatively. Based on the temporal and spectral characteristics of wavelength conversion, a comprehensive analysis on conversion efficiency is presented. The simulation results are in good agreement with the measured data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...