Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 218-227, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38133996

RESUMO

The self-assembly of DNA-based monomers into higher-order structures has significant potential for realizing various biomimetic behaviors including algorithmic assembly, ultrasensitive detection, and self-replication. For these behaviors, it is desirable to implement high energetic barriers to undesired spurious nucleation, where such barriers can be bypassed via seed-initiated assembly. Joint-neighbor capture is a mechanism enabling the construction of such barriers while allowing for algorithmic behaviors, such as bit-copying. Cycles of polymerization with division could accordingly be used for implementing exponential growth in self-replicating materials. Previously, we demonstrated crisscross polymerization, a strategy that attains robust seed-dependent self-assembly of single-stranded DNA and DNA-origami monomers via joint-neighbor capture. Here, we expand the crisscross assembly to achieve autonomous, isothermal exponential amplification of ribbons through their concurrent growth and scission via toehold-mediated strand displacement. We demonstrate how this crisscross chain reaction, or 3CR, can be used as a detection strategy through coupling to single- and double-stranded nucleic acid targets and introduce a rule-based stochastic modeling approach for simulating molecular self-assembly behaviors such as crisscross-ribbon scission.


Assuntos
Técnicas Biossensoriais , DNA de Cadeia Simples , DNA/química , Polimerização , Técnicas de Amplificação de Ácido Nucleico
2.
J Chem Inf Model ; 62(22): 5513-5524, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36326605

RESUMO

An "imaginary transition structure" overlays the molecular graphs of the educt and product sides of an elementary chemical reaction in a single graph to highlight the changes in bond structure. We generalize this idea to reactions with complex mechanisms in a formally rigorous approach based on composing arrow-pushing steps represented as graph-transformation rules to construct an overall composite rule and a derived transition structure. This transition structure retains information about transient bond changes that are invisible at the overall level and can be constructed automatically from an existing database of detailed enzymatic mechanisms. We use the construction to (i) illuminate the distribution of catalytic action across enzymes and substrates and (ii) to search in a large database for reactions of known or unknown mechanisms that are compatible with the mechanism captured by the constructed composite rule.


Assuntos
Catálise , Bases de Dados Factuais
3.
Entropy (Basel) ; 24(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35626513

RESUMO

Probabilistic inference-the process of estimating the values of unobserved variables in probabilistic models-has been used to describe various cognitive phenomena related to learning and memory. While the study of biological realizations of inference has focused on animal nervous systems, single-celled organisms also show complex and potentially "predictive" behaviors in changing environments. Yet, it is unclear how the biochemical machinery found in cells might perform inference. Here, we show how inference in a simple Markov model can be approximately realized, in real-time, using polymerizing biochemical circuits. Our approach relies on assembling linear polymers that record the history of environmental changes, where the polymerization process produces molecular complexes that reflect posterior probabilities. We discuss the implications of realizing inference using biochemistry, and the potential of polymerization as a form of biological information-processing.

4.
Bioinformatics ; 37(Suppl_1): i392-i400, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252947

RESUMO

MOTIVATION: The design of enzymes is as challenging as it is consequential for making chemical synthesis in medical and industrial applications more efficient, cost-effective and environmentally friendly. While several aspects of this complex problem are computationally assisted, the drafting of catalytic mechanisms, i.e. the specification of the chemical steps-and hence intermediate states-that the enzyme is meant to implement, is largely left to human expertise. The ability to capture specific chemistries of multistep catalysis in a fashion that enables its computational construction and design is therefore highly desirable and would equally impact the elucidation of existing enzymatic reactions whose mechanisms are unknown. RESULTS: We use the mathematical framework of graph transformation to express the distinction between rules and reactions in chemistry. We derive about 1000 rules for amino acid side chain chemistry from the M-CSA database, a curated repository of enzymatic mechanisms. Using graph transformation, we are able to propose hundreds of hypothetical catalytic mechanisms for a large number of unrelated reactions in the Rhea database. We analyze these mechanisms to find that they combine in chemically sound fashion individual steps from a variety of known multistep mechanisms, showing that plausible novel mechanisms for catalysis can be constructed computationally. AVAILABILITY AND IMPLEMENTATION: The source code of the initial prototype of our approach is available at https://github.com/Nojgaard/mechsearch. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Bases de Dados Factuais , Expressão Gênica , Humanos
5.
J Comput Biol ; 28(7): 701-715, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34115945

RESUMO

While atom tracking with isotope-labeled compounds is an essential and sophisticated wet-lab tool to, for example, illuminate reaction mechanisms, there exists only a limited amount of formal methods to approach the problem. Specifically, when large (bio-)chemical networks are considered where reactions are stereospecific, rigorous techniques are inevitable. We present an approach using the right Cayley graph of a monoid to track atoms concurrently through sequences of reactions and predict their potential location in product molecules. This can not only be used to systematically build hypothesis or reject reaction mechanisms (we will use the ANRORC mechanism "Addition of the Nucleophile, Ring Opening, and Ring Closure" as an example) but also to infer naturally occurring subsystems of (bio-)chemical systems. Our results include the analysis of the carbon traces within the tricarboxylic acid cycle and infer subsystems based on projections of the right Cayley graph onto a set of relevant atoms.


Assuntos
Quimioinformática/métodos , Ciclo do Ácido Cítrico , Algoritmos , Marcação por Isótopo
6.
Proc Natl Acad Sci U S A ; 117(6): 2930-2937, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980533

RESUMO

Scaffold proteins organize cellular processes by bringing signaling molecules into interaction, sometimes by forming large signalosomes. Several of these scaffolds are known to polymerize. Their assemblies should therefore not be understood as stoichiometric aggregates, but as combinatorial ensembles. We analyze the combinatorial interaction of ligands loaded on polymeric scaffolds, in both a continuum and discrete setting, and compare it with multivalent scaffolds with fixed number of binding sites. The quantity of interest is the abundance of ligand interaction possibilities-the catalytic potential Q-in a configurational mixture. Upon increasing scaffold abundance, scaffolding systems are known to first increase opportunities for ligand interaction and then to shut them down as ligands become isolated on distinct scaffolds. The polymerizing system stands out in that the dependency of Q on protomer concentration switches from being dominated by a first order to a second order term within a range determined by the polymerization affinity. This behavior boosts Q beyond that of any multivalent scaffold system. In addition, the subsequent drop-off is considerably mitigated in that Q decreases with half the power in protomer concentration than for any multivalent scaffold. We explain this behavior in terms of how the concentration profile of the polymer-length distribution adjusts to changes in protomer concentration and affinity. The discrete case turns out to be similar, but the behavior can be exaggerated at small protomer numbers because of a maximal polymer size, analogous to finite-size effects in bond percolation on a lattice.


Assuntos
Proteínas/química , Ligantes , Polimerização , Polímeros/química , Ligação Proteica , Proteínas/metabolismo
7.
Phys Rev E ; 99(6-1): 062306, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31330579

RESUMO

We study a simple model in which the growth of a network is determined by the location of one or more random walkers. Depending on walker motility rate, the model generates a spectrum of structures situated between well-known limiting cases. We demonstrate that the average degree observed by a walker is a function of its motility rate. Modulating the extent to which the location of node attachment is determined by the walker as opposed to random selection is akin to scaling the speed of the walker and generates new limiting behavior. The model raises questions about energetic and computational resource requirements in a physical instantiation.

8.
Bioinformatics ; 34(13): i583-i592, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950016

RESUMO

Motivation: We present an overview of the Kappa platform, an integrated suite of analysis and visualization techniques for building and interactively exploring rule-based models. The main components of the platform are the Kappa Simulator, the Kappa Static Analyzer and the Kappa Story Extractor. In addition to these components, we describe the Kappa User Interface, which includes a range of interactive visualization tools for rule-based models needed to make sense of the complexity of biological systems. We argue that, in this approach, modeling is akin to programming and can likewise benefit from an integrated development environment. Our platform is a step in this direction. Results: We discuss details about the computation and rendering of static, dynamic, and causal views of a model, which include the contact map (CM), snaphots at different resolutions, the dynamic influence network (DIN) and causal compression. We provide use cases illustrating how these concepts generate insight. Specifically, we show how the CM and snapshots provide information about systems capable of polymerization, such as Wnt signaling. A well-understood model of the KaiABC oscillator, translated into Kappa from the literature, is deployed to demonstrate the DIN and its use in understanding systems dynamics. Finally, we discuss how pathways might be discovered or recovered from a rule-based model by means of causal compression, as exemplified for early events in EGF signaling. Availability and implementation: The Kappa platform is available via the project website at kappalanguage.org. All components of the platform are open source and freely available through the authors' code repositories.


Assuntos
Biologia Computacional/métodos , Visualização de Dados , Modelos Biológicos , Transdução de Sinais , Software , Fator de Crescimento Epidérmico/metabolismo , Via de Sinalização Wnt
9.
IEEE Trans Vis Comput Graph ; 24(1): 184-194, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866584

RESUMO

We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rule-based models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.

10.
Biology (Basel) ; 7(1)2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-29295479

RESUMO

It is often assumed, but not established, that the major neurodegenerative diseases, such as Parkinson's disease, are not just age-dependent (their incidence changes with time) but actually aging-dependent (their incidence is coupled to the process that determines lifespan). To determine a dependence on the aging process requires the joint probability distribution of disease onset and lifespan. For human Parkinson's disease, such a joint distribution is not available, because the disease cuts lifespan short. To acquire a joint distribution, we resorted to an established C. elegans model of Parkinson's disease in which the loss of dopaminergic neurons is not fatal. We find that lifespan is not correlated with the loss of individual neurons. Therefore, neuronal loss is age-dependent and aging-independent. We also find that a lifespan-extending intervention into insulin/IGF1 signaling accelerates the loss of specific dopaminergic neurons, while leaving death and neuronal loss times uncorrelated. This suggests that distinct and compartmentalized instances of the same genetically encoded insulin/IGF1 signaling machinery act independently to control neurodegeneration and lifespan in C. elegans. Although the human context might well be different, our study calls attention to the need to maintain a rigorous distinction between age-dependence and aging-dependence.

11.
Nature ; 530(7588): 103-7, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26814965

RESUMO

The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.


Assuntos
Envelhecimento/fisiologia , Caenorhabditis elegans/fisiologia , Longevidade/fisiologia , Envelhecimento/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Morte , Dieta , Fatores de Transcrição Forkhead/genética , Cinética , Longevidade/genética , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/genética , Receptor de Insulina/genética , Risco , Temperatura , Fatores de Tempo , Fatores de Transcrição/genética
12.
Nat Commun ; 5: 5020, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25262602

RESUMO

Cells adjust their behaviour in response to redox events by regulating protein activity through the reversible formation of disulfide bridges between cysteine thiols. However, the spatial and temporal control of these modifications remains poorly understood in multicellular organisms. Here we measured the protein thiol-disulfide balance in live Caenorhabditis elegans using a genetically encoded redox sensor and found that it is specific to tissues and is patterned spatially within a tissue. Insulin signalling regulates the sensor's oxidation at both of these levels. Unexpectedly, we found that isogenic individuals exhibit large differences in the sensor's thiol-disulfide balance. This variation contrasts with the general view that glutathione acts as the main cellular redox buffer. Indeed, our work suggests that glutathione converts small changes in its oxidation level into large changes in its redox potential. We therefore propose that glutathione facilitates the sensitive control of the thiol-disulfide balance of target proteins in response to cellular redox events.


Assuntos
Caenorhabditis elegans/fisiologia , Citosol/metabolismo , Regulação da Expressão Gênica , Oxigênio/química , Animais , Cisteína/química , Dissulfetos/química , Glutationa/química , Insulina/metabolismo , Microscopia de Fluorescência , Oxirredução , Faringe/fisiologia , Transdução de Sinais , Compostos de Sulfidrila/química , Transgenes
13.
PLoS Genet ; 10(3): e1004225, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675767

RESUMO

Insulin-like peptides (ILPs) play highly conserved roles in development and physiology. Most animal genomes encode multiple ILPs. Here we identify mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses. Our systematic studies identify an ILP-based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than global redundancy. Notably, we show that ILPs regulate each other transcriptionally, uncovering an ILP-to-ILP regulatory network that underlies the combinatorial phenotypic coding by the ILP family. Extensive analyses of genetic interactions among ILPs reveal how their signals are integrated. A combined analysis of these functional and regulatory ILP interactions identifies local genetic circuits that act in parallel and interact by crosstalk, feedback and compensation. This organization provides emergent mechanisms for phenotypic specificity and graded regulation for the combinatorial phenotypic coding we observe. Our findings also provide insights into how large hormonal networks regulate diverse traits.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Insulina/genética , Receptor de Insulina/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Redes Reguladoras de Genes , Insulina/metabolismo , Longevidade/genética , Fenótipo , Receptor de Insulina/metabolismo , Transdução de Sinais/genética , Somatomedinas/genética , Somatomedinas/metabolismo
14.
Nat Methods ; 10(7): 665-70, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23666410

RESUMO

The measurement of lifespan pervades aging research. Because lifespan results from complex interactions between genetic, environmental and stochastic factors, it varies widely even among isogenic individuals. The actions of molecular mechanisms on lifespan are therefore visible only through their statistical effects on populations. Indeed, survival assays in Caenorhabditis elegans have provided critical insights into evolutionarily conserved determinants of aging. To enable the rapid acquisition of survival curves at an arbitrary statistical resolution, we developed a scalable imaging and analysis platform to observe nematodes over multiple weeks across square meters of agar surface at 8-µm resolution. The automated method generates a permanent visual record of individual deaths from which survival curves are constructed and validated, producing data consistent with results from the manual method of survival curve acquisition for several mutants in both standard and stressful environments. Our approach permits rapid, detailed reverse-genetic and chemical screens for effects on survival and enables quantitative investigations into the statistical structure of aging.


Assuntos
Caenorhabditis elegans/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Expectativa de Vida , Longevidade/fisiologia , Análise de Sobrevida , Taxa de Sobrevida , Gravação em Vídeo/métodos , Animais
15.
PLoS One ; 7(3): e32032, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412851

RESUMO

The assembly of molecular machines and transient signaling complexes does not typically occur under circumstances in which the appropriate proteins are isolated from all others present in the cell. Rather, assembly must proceed in the context of large-scale protein-protein interaction (PPI) networks that are characterized both by conflict and combinatorial complexity. Conflict refers to the fact that protein interfaces can often bind many different partners in a mutually exclusive way, while combinatorial complexity refers to the explosion in the number of distinct complexes that can be formed by a network of binding possibilities. Using computational models, we explore the consequences of these characteristics for the global dynamics of a PPI network based on highly curated yeast two-hybrid data. The limited molecular context represented in this data-type translates formally into an assumption of independent binding sites for each protein. The challenge of avoiding the explicit enumeration of the astronomically many possibilities for complex formation is met by a rule-based approach to kinetic modeling. Despite imposing global biophysical constraints, we find that initially identical simulations rapidly diverge in the space of molecular possibilities, eventually sampling disjoint sets of large complexes. We refer to this phenomenon as "compositional drift". Since interaction data in PPI networks lack detailed information about geometric and biological constraints, our study does not represent a quantitative description of cellular dynamics. Rather, our work brings to light a fundamental problem (the control of compositional drift) that must be solved by mechanisms of assembly in the context of large networks. In cases where drift is not (or cannot be) completely controlled by the cell, this phenomenon could constitute a novel source of phenotypic heterogeneity in cell populations.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Algoritmos , Simulação por Computador , Cinética , Modelos Biológicos , Ligação Proteica , Multimerização Proteica , Proteômica/métodos
16.
Proc Natl Acad Sci U S A ; 109(7): 2348-53, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308356

RESUMO

Most cellular processes rely on large multiprotein complexes that must assemble into a well-defined quaternary structure in order to function. A number of prominent examples, including the 20S core particle of the proteasome and the AAA+ family of ATPases, contain ring-like structures. Developing an understanding of the complex assembly pathways employed by ring-like structures requires a characterization of the problems these pathways have had to overcome as they evolved. In this work, we use computational models to uncover one such problem: a deadlocked plateau in the assembly dynamics. When the molecular interactions between subunits are too strong, this plateau leads to significant delays in assembly and a reduction in steady-state yield. Conversely, if the interactions are too weak, assembly delays are caused by the instability of crucial intermediates. Intermediate affinities thus maximize the efficiency of assembly for homomeric ring-like structures. In the case of heteromeric rings, we find that rings including at least one weak interaction can assemble efficiently and robustly. Estimation of affinities from solved structures of ring-like complexes indicates that heteromeric rings tend to contain a weak interaction, confirming our prediction. In addition to providing an evolutionary rationale for structural features of rings, our work forms the basis for understanding the complex assembly pathways of stacked rings like the proteasome and suggests principles that would aid in the design of synthetic ring-like structures that self-assemble efficiently.


Assuntos
Ligação Proteica , Modelos Moleculares , Conformação Proteica
17.
Biophys J ; 103(11): 2389-98, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23283238

RESUMO

Signaling networks have evolved to transduce external and internal information into critical cellular decisions such as growth, differentiation, and apoptosis. These networks form highly interconnected systems within cells due to network crosstalk, where an enzyme from one canonical pathway acts on targets from other pathways. It is currently unclear what types of effects these interconnections can have on the response of networks to incoming signals. In this work, we employ mathematical models to characterize the influence that multiple substrates have on one another. These models build off of the atomistic motif of a kinase/phosphatase pair acting on a single substrate. We find that the ultrasensitive, switch-like response these motifs can exhibit becomes transitive: if one substrate saturates the enzymes and responds ultrasensitively, then all substrates will do so regardless of their degree of saturation. We also demonstrate that the phosphatases themselves can induce crosstalk even when the kinases are independent. These findings have strong implications for how we understand and classify crosstalk, as well as for the rational development of kinase inhibitors aimed at pharmaceutically modulating network behavior.


Assuntos
Comunicação Celular/fisiologia , Modelos Biológicos , Complexos Multienzimáticos/fisiologia , Transdução de Sinais/fisiologia , Animais , Simulação por Computador , Humanos
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 1): 051917, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22181454

RESUMO

We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative system described by a master equation. We use operator and functional integral methods from reaction-diffusion theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class of minimal models of switches, showing how all critical properties for switch behavior can be computed within a unified framework.


Assuntos
Modelos Biológicos , Transdução de Sinais , Difusão , Transição de Fase , Processos Estocásticos , Fatores de Tempo
19.
J Theor Biol ; 280(1): 197-8, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21497609
20.
J Theor Biol ; 276(1): 269-76, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21315730

RESUMO

Scientific theories seek to provide simple explanations for significant empirical regularities based on fundamental physical and mechanistic constraints. Biological theories have rarely reached a level of generality and predictive power comparable to physical theories. This discrepancy is explained through a combination of frozen accidents, environmental heterogeneity, and widespread non-linearities observed in adaptive processes. At the same time, model building has proven to be very successful when it comes to explaining and predicting the behavior of particular biological systems. In this respect biology resembles alternative model-rich frameworks, such as economics and engineering. In this paper we explore the prospects for general theories in biology, and suggest that these take inspiration not only from physics, but also from the information sciences. Future theoretical biology is likely to represent a hybrid of parsimonious reasoning and algorithmic or rule-based explanation. An open question is whether these new frameworks will remain transparent to human reason. In this context, we discuss the role of machine learning in the early stages of scientific discovery. We argue that evolutionary history is not only a source of uncertainty, but also provides the basis, through conserved traits, for very general explanations for biological regularities, and the prospect of unified theories of life.


Assuntos
Biologia , Modelos Biológicos , Animais , Evolução Biológica , Humanos , Idioma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...