Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 77(11): 2217-2233, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31440771

RESUMO

The molecular mechanisms that control the biosynthetic trafficking, surface delivery, and degradation of TrkA receptor are essential for proper nerve growth factor (NGF) function, and remain poorly understood. Here, we identify Tetraspanin1 (Tspan1) as a critical regulator of TrkA signaling and neuronal differentiation induced by NGF. Tspan1 is expressed by developing TrkA-positive dorsal root ganglion (DRG) neurons and its downregulation in sensory neurons inhibits NGF-mediated axonal growth. In addition, our data demonstrate that Tspan1 forms a molecular complex with the immature form of TrkA localized in the endoplasmic reticulum (ER). Finally, knockdown of Tspan1 reduces the surface levels of TrkA by promoting its preferential sorting towards the autophagy/lysosomal degradation pathway. Together, these data establish a novel homeostatic role of Tspan1, coordinating the biosynthetic trafficking and degradation of TrkA, regardless the presence of NGF.


Assuntos
Fator de Crescimento Neural/metabolismo , Neurogênese , Proteostase , Receptor trkA/metabolismo , Transdução de Sinais , Tetraspaninas/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Masculino , Células PC12 , Ratos , Ratos Wistar
2.
Stem Cell Reports ; 10(3): 1000-1015, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29478900

RESUMO

The balance between factors leading to proliferation and differentiation of cortical neural precursors (CNPs) determines the correct cortical development. In this work, we show that GDNF and its receptor GFRα1 are expressed in the neocortex during the period of cortical neurogenesis. We show that the GDNF/GFRα1 complex inhibits the self-renewal capacity of mouse CNP cells induced by fibroblast growth factor 2 (FGF2), promoting neuronal differentiation. While GDNF leads to decreased proliferation of cultured cortical precursor cells, ablation of GFRα1 in glutamatergic cortical precursors enhances its proliferation. We show that GDNF treatment of CNPs promoted morphological differentiation even in the presence of the self-renewal-promoting factor, FGF2. Analysis of GFRα1-deficient mice shows an increase in the number of cycling cells during cortical development and a reduction in dendrite development of cortical GFRα1-expressing neurons. Together, these results indicate that GDNF/GFRα1 signaling plays an essential role in regulating the proliferative condition and the differentiation of cortical progenitors.


Assuntos
Diferenciação Celular/fisiologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurônios/metabolismo , Animais , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Neurônios/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
3.
Cereb Cortex ; 28(1): 236-249, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27909004

RESUMO

The proper formation and morphogenesis of dendrites is essential to the establishment of neuronal connectivity. We report that 2 members of the Pea3 family of transcription factors, Etv4 and Etv5, are expressed in hippocampal neurons during the main period of dendritogenesis, suggesting that they have a function in dendrite development. Here, we show that these transcription factors are physiological regulators of growth and arborization of pyramidal cell dendrites in the developing hippocampus. Gain and loss of function assays indicate that Etv4 and Etv5 are required for proper development of hippocampal dendritic arbors and spines. We have found that in vivo deletion of either Etv4 or Etv5 in hippocampal neurons causes deficits in dendrite size and complexity, which are associated with impaired cognitive function. Additionally, our data support the idea that Etv4 and Etv5 are part of a brain-derived neurotrophic factor-mediated transcriptional program required for proper hippocampal dendrite connectivity and plasticity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Dendritos/metabolismo , Hipocampo/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Cognição/fisiologia , Proteínas de Ligação a DNA/genética , Hipocampo/crescimento & desenvolvimento , Camundongos Transgênicos , Crescimento Neuronal/fisiologia , Plasticidade Neuronal/fisiologia , Células PC12 , Proteínas Proto-Oncogênicas c-ets/genética , Ratos , Fatores de Transcrição/genética
4.
Cell Rep ; 21(5): 1129-1139, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29091753

RESUMO

During aging, the brain undergoes changes that impair cognitive capacity and circuit plasticity, including a marked decrease in production of adult-born hippocampal neurons. It is unclear whether development and integration of those new neurons are also affected by age. Here, we show that adult-born granule cells (GCs) in aging mice are scarce and exhibit slow development, but they display a remarkable potential for structural plasticity. Retrovirally labeled 3-week-old GCs in middle-aged mice were small, underdeveloped, and disconnected. Neuronal development and integration were accelerated by voluntary exercise or environmental enrichment. Similar effects were observed via knockdown of Lrig1, an endogenous negative modulator of neurotrophin receptors. Consistently, blocking neurotrophin signaling by Lrig1 overexpression abolished the positive effects of exercise. These results demonstrate an unparalleled degree of plasticity in the aging brain mediated by neurotrophins, whereby new GCs remain immature until becoming rapidly recruited to the network by activity.


Assuntos
Envelhecimento , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Calbindinas/metabolismo , Proteínas de Ligação a DNA , Dendritos/fisiologia , Giro Denteado/metabolismo , Feminino , Técnicas In Vitro , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Proteínas Nucleares/metabolismo , Técnicas de Patch-Clamp , Condicionamento Físico Animal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
5.
Development ; 143(22): 4224-4235, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27707798

RESUMO

The formation of synaptic connections during nervous system development requires the precise control of dendrite growth and synapse formation. Although glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 are expressed in the forebrain, the role of this system in the hippocampus remains unclear. Here, we investigated the consequences of GFRα1 deficiency for the development of hippocampal connections. Analysis of conditional Gfra1 knockout mice shows a reduction in dendritic length and complexity, as well as a decrease in postsynaptic density specializations and in the synaptic localization of postsynaptic proteins in hippocampal neurons. Gain- and loss-of-function assays demonstrate that the GDNF-GFRα1 complex promotes dendritic growth and postsynaptic differentiation in cultured hippocampal neurons. Finally, in vitro assays revealed that GDNF-GFRα1-induced dendrite growth and spine formation are mediated by NCAM signaling. Taken together, our results indicate that the GDNF-GFRα1 complex is essential for proper hippocampal circuit development.


Assuntos
Dendritos/fisiologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Hipocampo/crescimento & desenvolvimento , Moléculas de Adesão de Célula Nervosa/fisiologia , Neurogênese/genética , Plasticidade Neuronal/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Embrião de Mamíferos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Complexos Multiproteicos/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Neurônios/fisiologia , Ligação Proteica , Ratos , Ratos Wistar
6.
EMBO Rep ; 17(4): 601-16, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26935556

RESUMO

Even though many extracellular factors have been identified as promoters of general dendritic growth and branching, little is known about the cell-intrinsic modulators that allow neurons to sculpt distinctive patterns of dendrite arborization. Here, we identify Lrig1, a nervous system-enriched LRR protein, as a key physiological regulator of dendrite complexity of hippocampal pyramidal neurons. Lrig1-deficient mice display morphological changes in proximal dendrite arborization and defects in social interaction. Specifically, knockdown of Lrig1 enhances both primary dendrite formation and proximal dendritic branching of hippocampal neurons, two phenotypes that resemble the effect of BDNF on these neurons. In addition, we show that Lrig1 physically interacts with TrkB and attenuates BDNF signaling. Gain and loss of function assays indicate that Lrig1 restricts BDNF-induced dendrite morphology. Together, our findings reveal a novel and essential role of Lrig1 in regulating morphogenic events that shape the hippocampal circuits and establish that the assembly of TrkB with Lrig1 represents a key mechanism for understanding how specific neuronal populations expand the repertoire of responses to BDNF during brain development.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dendritos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hipocampo/fisiologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Técnicas de Inativação de Genes , Células HEK293 , Hipocampo/citologia , Humanos , Glicoproteínas de Membrana/deficiência , Camundongos , Morfogênese , Proteínas do Tecido Nervoso/deficiência , Neurônios/metabolismo , Polissacarídeos , Transdução de Sinais
7.
PLoS One ; 7(2): e32087, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384148

RESUMO

The Sprouty (Spry) family of proteins represents endogenous regulators of downstream signaling pathways induced by receptor tyrosine kinases (RTKs). Using real time PCR, we detect a significant increase in the expression of Spry4 mRNA in response to NGF, indicating that Spry4 could modulate intracellular signaling pathways and biological processes induced by NGF and its receptor TrkA. In this work, we demonstrate that overexpression of wild-type Spry4 causes a significant reduction in MAPK and Rac1 activation and neurite outgrowth induced by NGF. At molecular level, our findings indicate that ectopic expression of a mutated form of Spry4 (Y53A), in which a conserved tyrosine residue was replaced, fail to block both TrkA-mediated Erk/MAPK activation and neurite outgrowth induced by NGF, suggesting that an intact tyrosine 53 site is required for the inhibitory effect of Spry4 on NGF signaling. Downregulation of Spry4 using small interference RNA knockdown experiments potentiates PC12 cell differentiation and MAPK activation in response to NGF. Together, these findings establish a new physiological mechanism through which Spry4 regulates neurite outgrowth reducing not only the MAPK pathway but also restricting Rac1 activation in response to NGF.


Assuntos
Fator de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptor trkA/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Mutação , Células PC12 , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transdução de Sinais , Tirosina/química , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Exp Neurol ; 229(2): 364-71, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21414313

RESUMO

Prenatal ethanol exposure (PEE) induces morphologic and functional alterations in the developing central nervous system. The orderly migration of neuroblasts is a key process in the development of a layered structure such as the cerebral cortex (CC). From initial stages of corticogenesis, the transcription factor Pax6 is intensely expressed in neuroepithelial and radial glia cells (RGCs) and is involved in continual regulation of cell surface properties responsible for both cellular identity and radial migration. In the present work, one month before mating, during pregnancy and lactation, a group of female Wistar rats were fed a liquid diet with 5.9% (w/w) ethanol (EtOH), rendering moderate blood EtOH concentrations. Maternal gestational weight progression and fetal CC thickness were measured. CC from E12-P3 rats were examined for expression of vimentin, nestin, S-100b, Pax6 and doublecortin using immunohistochemical assays. RGCs expressing vimentin, nestin, S-100b and Pax6 had abnormal morphologies. The migration distance through the CC and the number of doublecortin-ir neuroblasts in germinative zones were decreased. We found significant morphologic defects on RGCs, a marked delay in neuronal migration, decreased numbers of neuroblasts, and decreased numbers of Pax6-ir cells in the CC as a consequence of exposure to ethanol during development. These observations suggest a sequence of toxic events that contribute to cortical dysplasia in offspring exposed to EtOH during gestation.


Assuntos
Encéfalo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Etanol/farmacologia , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Análise de Variância , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Proteínas do Olho/metabolismo , Feminino , Imunofluorescência , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Proteínas de Filamentos Intermediários/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neuroglia/fisiologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Gravidez , Ratos , Ratos Wistar , Proteínas Repressoras/metabolismo , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA