Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240253

RESUMO

Brazil has a crucial role in global food security and biodiversity, boasting one of the largest agricultural areas and two globally vital biomes, the Amazon and the Atlantic Forest [...].


Assuntos
Ecossistema , Florestas , Brasil , Biodiversidade , Plantas/genética
2.
Physiol Mol Biol Plants ; 29(4): 559-577, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37187776

RESUMO

Climate change increases precipitation variability, particularly in savanna environments. We have used integrative strategies to understand the molecular mechanisms of drought tolerance, which will be crucial for developing improved genotypes. The current study compares the molecular and physiological parameters between the drought-tolerant Embrapa 48 and the sensitive BR16 genotypes. We integrated the root-shoot system's transcriptome, proteome, and metabolome to understand drought tolerance. The results indicated that Embrapa 48 had a greater capacity for water absorption due to alterations in length and volume. Drought tolerance appears to be ABA-independent, and IAA levels in the leaves partially explain the higher root growth. Proteomic profiles revealed up-regulated proteins involved in glutamine biosynthesis and proteolysis, suggesting osmoprotection and explaining the larger root volume. Dysregulated proteins in the roots belong to the phenylpropanoid pathways. Additionally, PR-like proteins involved in the biosynthesis of phenolics may act to prevent oxidative stress and as a substrate for modifying cell walls. Thus, we concluded that alterations in the root-shoot conductive vessel system are critical in promoting drought tolerance. Moreover, photosynthetic parameters from reciprocal grafting experiments indicated that the root system is more essential than the shoots in the drought tolerance mechanism. Finally, we provided a comprehensive overview of the genetic, molecular, and physiological traits involved in drought tolerance mechanisms. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01307-7.

3.
Int J Mol Sci ; 23(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35742988

RESUMO

Plant survival depends on adaptive mechanisms that constantly rely on signal recognition and transduction. The predominant class of signal discriminators is receptor kinases, with a vast member composition in plants. The transduction of signals occurs in part by a simple repertoire of heterotrimeric G proteins, with a core composed of α-, ß-, and γ-subunits, together with a 7-transmembrane Regulator G Signaling (RGS) protein. With a small repertoire of G proteins in plants, phosphorylation by receptor kinases is critical in regulating the active state of the G-protein complex. This review describes the in vivo detected phosphosites in plant G proteins and conservation scores, and their in vitro corresponding kinases. Furthermore, recently described outcomes, including novel arrestin-like internalization of RGS and a non-canonical phosphorylation switching mechanism that drives G-protein plasticity, are discussed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Heterotriméricas de Ligação ao GTP , Proteínas RGS , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Fosforilação , Fosfotransferases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo
4.
Plant Physiol ; 187(1): 158-173, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618135

RESUMO

Because of limited free diffusion in the cytoplasm, viruses must use active transport mechanisms to move intracellularly. Nevertheless, how the plant single-stranded DNA begomoviruses hijack the host intracytoplasmic transport machinery to move from the nucleus to the plasmodesmata remains enigmatic. Here, we identified nuclear shuttle protein (NSP)-interacting proteins from Arabidopsis (Arabidopsis thaliana) by probing a protein microarray and demonstrated that the cabbage leaf curl virus NSP, a facilitator of the nucleocytoplasmic trafficking of viral (v)DNA, interacts in planta with an endosomal vesicle-localized, plant-specific syntaxin-6 protein, designated NSP-interacting syntaxin domain-containing protein (NISP). NISP displays a proviral function, unlike the syntaxin-6 paralog AT2G18860 that failed to interact with NSP. Consistent with these findings, nisp-1 mutant plants were less susceptible to begomovirus infection, a phenotype reversed by NISP complementation. NISP-overexpressing lines accumulated higher levels of vDNA than wild-type. Furthermore, NISP interacted with an NSP-interacting GTPase (NIG) involved in NSP-vDNA nucleocytoplasmic translocation. The NISP-NIG interaction was enhanced by NSP. We also showed that endosomal NISP associates with vDNA. NISP may function as a docking site for recruiting NIG and NSP into endosomes, providing a mechanism for the intracytoplasmic translocation of the NSP-vDNA complex toward and from the cell periphery.


Assuntos
Arabidopsis , Begomovirus , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Begomovirus/fisiologia , Núcleo Celular/metabolismo
5.
Int J Mol Sci ; 22(15)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34361053

RESUMO

Leaf senescence is a genetically regulated developmental process that can be triggered by a variety of internal and external signals, including hormones and environmental stimuli. Among the senescence-associated genes controlling leaf senescence, the transcriptional factors (TFs) comprise a functional class that is highly active at the onset and during the progression of leaf senescence. The plant-specific NAC (NAM, ATAF, and CUC) TFs are essential for controlling leaf senescence. Several members of Arabidopsis AtNAC-SAGs are well characterized as players in elucidated regulatory networks. However, only a few soybean members of this class display well-known functions; knowledge about their regulatory circuits is still rudimentary. Here, we describe the expression profile of soybean GmNAC-SAGs upregulated by natural senescence and their functional correlation with putative AtNAC-SAGs orthologs. The mechanisms and the regulatory gene networks underlying GmNAC081- and GmNAC030-positive regulation in leaf senescence are discussed. Furthermore, new insights into the role of GmNAC065 as a negative senescence regulator are presented, demonstrating extraordinary functional conservation with the Arabidopsis counterpart. Finally, we describe a regulatory circuit which integrates a stress-induced cell death program with developmental leaf senescence via the NRP-NAC-VPE signaling module.


Assuntos
Senescência Celular , Redes Reguladoras de Genes , Glycine max/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Transativadores/metabolismo , Proteínas de Plantas/genética , Transativadores/genética
6.
Sci Rep ; 11(1): 11178, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045652

RESUMO

NACs are plant-specific transcription factors involved in controlling plant development, stress responses, and senescence. As senescence-associated genes (SAGs), NACs integrate age- and stress-dependent pathways that converge to programmed cell death (PCD). In Arabidopsis, NAC-SAGs belong to well-characterized regulatory networks, poorly understood in soybean. Here, we interrogated the soybean genome and provided a comprehensive analysis of senescence-associated Glycine max (Gm) NACs. To functionally examine GmNAC-SAGs, we selected GmNAC065, a putative ortholog of Arabidopsis ANAC083/VNI2 SAG, and the cell death-promoting GmNAC085, an ANAC072 SAG putative ortholog, for analyses. Expression analysis of GmNAC065 and GmNAC085 in soybean demonstrated (i) these cell death-promoting GmNACs display contrasting expression changes during age- and stress-induced senescence; (ii) they are co-expressed with functionally different gene sets involved in stress and PCD, and (iii) are differentially induced by PCD inducers. Furthermore, we demonstrated GmNAC065 expression delays senescence in Arabidopsis, a phenotype associated with enhanced oxidative performance under multiple stresses, higher chlorophyll, carotenoid and sugar contents, and lower stress-induced PCD compared to wild-type. In contrast, GmNAC085 accelerated stress-induced senescence, causing enhanced chlorophyll loss, ROS accumulation and cell death, decreased antioxidative system expression and activity. Accordingly, GmNAC065 and GmNAC085 targeted functionally contrasting sets of downstream AtSAGs, further indicating that GmNAC85 and GmNAC065 regulators function inversely in developmental and environmental PCD.


Assuntos
Apoptose/genética , Glycine max/metabolismo , Desenvolvimento Vegetal , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Antioxidantes/metabolismo , Arabidopsis , Senescência Celular/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundário , Glycine max/genética , Fatores de Transcrição/genética
7.
Curr Opin Biotechnol ; 70: 108-114, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33866213

RESUMO

Plants have developed multilayered molecular defense strategies to combat pathogens. These defense layers have been predominantly identified and characterized in incompatible interactions, in which the plant immune system induces a rapid and efficient defense. Nevertheless, due to the constant evolutionary pressure between plants and pathogens for dominance, it is conceptually accepted that several mechanisms of plant defense may be hidden by the co-evolving immune-suppressing functions from pathogens. Recent studies focusing on begomovirus-host interactions have provided an in-depth view of how suppressed plant antiviral mechanisms can offer a more dynamic view of evolving pressures in the immune system also shared with nonviral pathogens. The emerging theme of crosstalk between host antiviral defenses and antibacterial immunity is also discussed. This interplay between immune responses allows bacteria and viruses to activate immunity against pathogens from a different kingdom, hence preventing multiple infections presumably to avoid competition.


Assuntos
Doenças das Plantas , Vírus de Plantas , Mecanismos de Defesa , Interações Hospedeiro-Patógeno , Imunidade Vegetal , Vírus de Plantas/genética , Plantas
8.
Phytochemistry ; 185: 112704, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33640683

RESUMO

Biotic and abiotic environmental stresses have limited the increase in soybean productivity. Overexpression of the molecular chaperone BiP in transgenic plants has been associated with the response to osmotic stress and drought tolerance by maintaining cellular homeostasis and delaying hypersensitive cell death. Here, we evaluated the metabolic changes in response to the hypersensitivity response (HR) caused by the non-compatible bacteria Pseudomonas syringae pv. tomato in BiP-overexpressing plants. The HR-modified metabolic profiles in BiP-overexpressing plants were significantly distinct from the wild-type untransformed. The transgenic plants displayed a lower abundance of HR-responsive metabolites as amino acids, sugars, carboxylic acids and signal molecules, including p-aminobenzoic acid (PABA) and dihydrosphingosine (DHS), when compared to infected wild-type plants. In contrast, salicylic acid (SA) biosynthetic and signaling pathways were more stimulated in transgenic plants, and both pathogenesis-related genes (PRs) and transcriptional factors controlling the SA pathway were more induced in the BiP-overexpressing lines. Furthermore, the long-chain bases (LCBs) and ceramide biosynthetic pathways showed alterations in gene expression and metabolite abundance. Thus, as a protective pathway against pathogens, HR regulation by sphingolipids and SA may account at least in part by the enhanced resistance of transgenic plants. GmNAC32 transcriptional factor was more induced in the transgenic plants and it has also been reported to regulate flavonoid synthesis in response to SA. In fact, the BiP-overexpressing plants showed an increase in flavonoids, mainly prenylated isoflavones, as precursors for phytoalexins. Our results indicate that the BiP-mediated acceleration in the hypersensitive response may be a target for metabolic engineering of plant resistance against pathogens.


Assuntos
Glycine max , Ácido Salicílico , Flavonoides , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Pseudomonas syringae , Glycine max/genética , Glycine max/metabolismo , Esfingolipídeos
9.
aBIOTECH ; 2(1): 14-31, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36304479

RESUMO

Drought stress is major abiotic stress that affects soybean production. Therefore, it is widely desirable that soybean becomes more tolerant to stress. To provide insights into regulatory mechanisms of the stress response, we compared the global gene expression profiles from leaves of two soybean genotypes that display different responses to water-deficit (BR 16 and Embrapa 48, drought-sensitive and drought-tolerant, respectively). After the RNA-seq analysis, a total of 5335 down-regulated and 3170 up-regulated genes were identified in the BR16. On the other hand, the number of genes differentially expressed was markedly lower in the Embrapa 48, 355 up-regulated and 471 down-regulated genes. However, induction and expression of protein kinases and transcription factors indicated signaling cascades involved in the drought tolerance. Overall, the results suggest that the metabolism of pectin is differently modulated in response to drought stress and may play a role in the soybean defense mechanism against drought. This occurs via an increase of the cell wall plasticity and crosslink, which contributed to a higher hydraulic conductance (K f) and relative water content (RWC%). The drought-tolerance mechanism of the Embrapa 48 genotype involves remodeling of the cell wall and increase of the hydraulic conductance to the maintenance of cell turgor and metabolic processes, resulting in the highest leaf RWC, photosynthetic rate (A), transpiration (E) and carboxylation (A/C i). Thus, we concluded that the cell wall adjustment under drought is important for a more efficient water use which promoted a more active photosynthetic metabolism, maintaining higher plant growth under drought stress. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-021-00043-4.

10.
Sci Rep ; 10(1): 16231, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004844

RESUMO

Plants are sessile organisms, which are vulnerable to environmental stresses. As such, plants have developed multiple molecular, physiological, and cellular mechanisms to cope with natural stressors. However, these environmental adversities, including drought, are sources of the main agribusiness problems since they interfere with plant growth and productivity. Particularly under water deprivation conditions, the abscisic acid-responsive element-binding protein AREB1/ABF2 plays an important role in drought stress response and physiological adaptation. In this investigation, we provide substantial confirmation for the role of AREB1/ABF2 in plant survival under severe water deficit using the CRISPR activation (CRISPRa) technique to enhance the AREB1 gene expression. In our strategy, the inactive nuclease dCas9 was fused with an Arabidopsis histone acetyltransferase 1, which improves gene expression by remodeling chromatin. The AREB1 overexpression promotes an improvement in the physiological performance of the transgenic homozygous plants under drought, which was associated with an increase in chlorophyll content, antioxidant enzyme activity, and soluble sugar accumulation, leading to lower reactive oxygen species accumulation. Finally, we found that the CRISPR-mediated up-regulation of AREB1 changes the abundance of several downstream ABA-inducible genes, allowing us to report that CRISPRa dCas9-HAT is a valuable biotechnological tool to improve drought stress tolerance through the positive regulation of AREB1.


Assuntos
Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Fenômenos Fisiológicos Vegetais/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Desidratação/genética , Edição de Genes , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas
11.
Front Plant Sci ; 11: 1228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903423

RESUMO

The first successful attempt to generate genetically modified plants expressing a transgene was preformed via T-DNA-based gene transfer employing Agrobacterium tumefaciens-mediated genetic transformation. Limitations over infectivity and in vitro tissue culture led to the development of other DNA delivery systems, such as the biolistic method. Herein, we developed a new one-step protocol for transgenic soybean recovery by combining the two different transformation methods. This protocol comprises the following steps: agrobacterial preparation, seed sterilization, soybean embryo excision, shoot-cell injury by tungsten-microparticle bombardment, A. tumefaciens-mediated transformation, embryo co-cultivation in vitro, and selection of transgenic plants. This protocol can be completed in approximately 30-40 weeks. The average efficiency of producing transgenic soybean germlines using this protocol was 9.84%, similar to other previously described protocols. However, we introduced a more cost-effective, more straightforward and shorter methodology for transgenic plant recovery, which allows co-cultivation and plant regeneration in a single step, decreasing the chances of contamination and making the manipulation easier. Finally, as a hallmark, our protocol does not generate plant chimeras, in contrast to traditional plant regeneration protocols applied in other Agrobacterium-mediated transformation methods. Therefore, this new approach of plant transformation is applicable for studies of gene function and the production of transgenic cultivars carrying different traits for precision-breeding programs.

12.
Physiol Mol Biol Plants ; 25(2): 457-472, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30956428

RESUMO

Drought is one of major constraints that limits agricultural productivity. Some factors, including climate changes and acreage expansion, indicates towards the need for developing drought tolerant genotypes. In addition to its protective role against endoplasmic reticulum (ER) stress, we have previously shown that the molecular chaperone binding protein (BiP) is involved in the response to osmotic stress and promotes drought tolerance. Here, we analyzed the proteomic and metabolic profiles of BiP-overexpressing transgenic soybean plants and the corresponding untransformed line under drought conditions by 2DE-MS and GC/MS. The transgenic plant showed lower levels of the abscisic acid and jasmonic acid as compared to untransformed plants both in irrigated and non-irrigated conditions. In contrast, the level of salicylic acid was higher in transgenic lines than in untransformed line, which was consistent with the antagonistic responses mediated by these phytohormones. The transgenic plants displayed a higher abundance of photosynthesis-related proteins, which gave credence to the hypothesis that these transgenic plants could survive under drought conditions due to their genetic modification and altered physiology. The proteins involved in pathways related to respiration, glycolysis and oxidative stress were not signifcantly changed in transgenic plants as compared to untransformed genotype, which indicate a lower metabolic perturbation under drought of the engineered genotype. The transgenic plants may have adopted a mechanism of drought tolerance by accumulating osmotically active solutes in the cell. As evidenced by the metabolic profiles, the accumulation of nine primary amino acids by protein degradation maintained the cellular turgor in the transgenic genotype under drought conditions. Thus, this mechanism of protection may cause the physiological activities including photosynthesis to be active under drought conditions.

13.
Theor Appl Genet ; 131(5): 1099-1110, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29397403

RESUMO

KEY MESSAGE: We molecularly characterized a new mutation in the GmFAD3A gene associated with low linolenic content in the Brazilian soybean cultivar CS303TNKCA and developed a molecular marker to select this mutation. Soybean is one of the most important crops cultivated worldwide. Soybean oil has 13% palmitic acid, 4% stearic acid, 20% oleic acid, 55% linoleic acid and 8% linolenic acid. Breeding programs are developing varieties with high oleic and low polyunsaturated fatty acids (linoleic and linolenic) to improve the oil oxidative stability and make the varieties more attractive for the soy industry. The main goal of this study was to characterize the low linoleic acid trait in CS303TNKCA cultivar. We sequenced CS303TNKCA GmFAD3A, GmFAD3B and GmFAD3C genes and identified an adenine point deletion in the GmFAD3A exon 5 (delA). This alteration creates a premature stop codon, leading to a truncated protein with just 207 residues that result in a non-functional enzyme. Analysis of enzymatic activity by heterologous expression in yeast support delA as the cause of low linolenic acid content in CS303TNKCA. Thus, we developed a TaqMan genotyping assay to associate delA with low linolenic acid content in segregating populations. Lines homozygous for delA had a linolenic acid content of 3.3 to 4.4%, and the variation at this locus accounted for 50.83 to 73.70% of the phenotypic variation. This molecular marker is a new tool to introgress the low linolenic acid trait into elite soybean cultivars and can be used to combine with high oleic trait markers to produce soybean with enhanced economic value. The advantage of using CS303TNKCA compared to other lines available in the literature is that this cultivar has good agronomic characteristics and is adapted to Brazilian conditions.


Assuntos
Genes de Plantas , Glycine max/genética , Ácido Linoleico/química , Óleo de Soja/química , Alelos , Sequência de Aminoácidos , Brasil , Códon sem Sentido , Cruzamentos Genéticos , Genótipo , Fenótipo , Melhoramento Vegetal , Mutação Puntual , Glycine max/química
14.
Sci Rep ; 7(1): 16273, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176736

RESUMO

Ribosomal proteins (RPs) play a fundamental role within all type of cells, as they are major components of ribosomes, which are essential for translation of mRNAs. Furthermore, these proteins are involved in various physiological and pathological processes. The intrinsic biological relevance of RPs motivated advanced studies for the identification of unrevealed RPs. In this work, we propose a new computational method, termed Rama, for the prediction of RPs, based on machine learning techniques, with a particular interest in plants. To perform an effective classification, Rama uses a set of fundamental attributes of the amino acid side chains and applies a two-step procedure to classify proteins with unknown function as RPs. The evaluation of the resultant predictive models showed that Rama could achieve mean sensitivity, precision, and specificity of 0.91, 0.91, and 0.82, respectively. Furthermore, a list of proteins that have no annotation in Phytozome v.10, and are annotated as RPs in Phytozome v.12, were correctly classified by our models. Additional computational experiments have also shown that Rama presents high accuracy to differentiate ribosomal proteins from RNA-binding proteins. Finally, two novel proteins of Arabidopsis thaliana were validated in biological experiments. Rama is freely available at http://inctipp.bioagro.ufv.br:8080/Rama .


Assuntos
Aprendizado de Máquina , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo
15.
Plant Cell Physiol ; 57(5): 1098-114, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27016095

RESUMO

The onset of leaf senescence is a highly regulated developmental change that is controlled by both genetics and the environment. Senescence is triggered by massive transcriptional reprogramming, but functional information about its underlying regulatory mechanisms is limited. In the current investigation, we performed a functional analysis of the soybean (Glycine max) osmotic stress- and endoplasmic reticulum (ER) stress-induced NAC transcription factor GmNAC81 during natural leaf senescence using overexpression studies and reverse genetics. GmNAC81-overexpressing lines displayed accelerated flowering and leaf senescence but otherwise developed normally. The precocious leaf senescence of GmNAC81-overexpressing lines was associated with greater Chl loss, faster photosynthetic decay and higher expression of hydrolytic enzyme-encoding GmNAC81 target genes, including the vacuolar processing enzyme (VPE), an executioner of vacuole-triggered programmed cell death (PCD). Conversely, virus-induced gene silencing-mediated silencing of GmNAC81 delayed leaf senescence and was associated with reductions in Chl loss, lipid peroxidation and the expression of GmNAC81 direct targets. Promoter-reporter studies revealed that the expression pattern of GmNAC81 was associated with senescence in soybean leaves. Our data indicate that GmNAC81 is a positive regulator of age-dependent senescence and may integrate osmotic stress- and ER stress-induced PCD responses with natural leaf senescence through the GmNAC81/VPE regulatory circuit.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica de Plantas , Glycine max/fisiologia , Fatores de Transcrição/metabolismo , Animais , Senescência Celular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Pressão Osmótica , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Glycine max/genética , Fatores de Tempo , Fatores de Transcrição/genética
16.
Virus Res ; 210: 27-33, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26186890

RESUMO

Fruit trees of temperate and tropical climates are of great economical importance worldwide and several viruses have been reported affecting their productivity and longevity. Fruit trees of different Brazilian regions displaying virus-like symptoms were evaluated for infection by circular DNA viruses. Seventy-four fruit trees were sampled and a novel, highly divergent, monopartite circular ssDNA virus was cloned from apple, pear and grapevine trees. Forty-five complete viral genomes were sequenced, with a size of approx. 3.4 kb and organized into five ORFs. Deduced amino acid sequences showed identities in the range of 38% with unclassified circular ssDNA viruses, nanoviruses and alphasatellites (putative Replication-associated protein, Rep), and begomo-, curto- and mastreviruses (putative coat protein, CP, and movement protein, MP). A large intergenic region contains a short palindromic sequence capable of forming a hairpin-like structure with the loop sequence TAGTATTAC, identical to the conserved nonanucleotide of circoviruses, nanoviruses and alphasatellites. Recombination events were not detected and phylogenetic analysis showed a relationship with circo-, nano- and geminiviruses. PCR confirmed the presence of this novel ssDNA virus in field plants. Infectivity tests using the cloned viral genome confirmed its ability to infect apple and pear tree seedlings, but not Nicotiana benthamiana. The name "Temperate fruit decay-associated virus" (TFDaV) is proposed for this novel virus.


Assuntos
Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Malus/virologia , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Pyrus/virologia , Vitis/virologia , Brasil , Análise por Conglomerados , Vírus de DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Dados de Sequência Molecular , Filogenia , Vírus de Plantas/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
17.
Arq. bras. cardiol ; 93(5): 423-462, nov. 2009. tab, ilus, graf
Artigo em Inglês, Espanhol, Português | LILACS | ID: lil-536194

RESUMO

FUNDAMENTO: O exercício físico promove estresse hemodinâmico. OBJETIVO: Testar se programas de treinamento com corridas voluntária e forçada induzem níveis distintos de expressão de Hsp72 no miocárdio de ratas Wistar. MÉTODOS: Ratas Wistar foram alocadas em três grupos (n = 6, cada): treinadas com corrida voluntária (TCV), treinadas com corrida forçada (TCF) e grupo controle (C). Os animais do TCV tiveram livre acesso à roda de corrida voluntária, enquanto os do TCF foram submetidos à corrida forçada em esteira (18 m/min, 0 por cento inclinação, 60 m/min, 5 dias/sem) durante oito semanas. Fragmentos dos ventrículos esquerdo (VE) e direito (VD) foram coletados para análise dos níveis de Hsp72. RESULTADOS: As ratas do grupo TCV correram, em média, 4,87 km, e as do TCF, 4,88 km por semana. Os animais dos grupos TCV e TCF ganharam menos peso (p < 0,05) que os do grupo C (81,67 ± 11,95 g vs 81,17 ± 10,18 g vs 111,50 ± 2,26 g, respectivamente). O peso relativo do coração não foi diferente (p > 0,05) entre os grupos TCV, TCF e C (4,54 ± 0,79 mg/g vs 4,94 ± 0,89 mg/g vs 4,34 ± 0,87 mg/g, respectivamente). Ratas treinadas com corrida forçada apresentaram níveis de Hsp72 maiores (p < 0,05) que as que correram voluntariamente, no VE (287,45 ± 35,86 por cento vs 135,59 ± 5,10 por cento, respectivamente) e no VD (241,31 ± 25,83 por cento vs 137,91 ± 45,20 por cento, respectivamente). CONCLUSÃO: Os programas de treinamento com corrida voluntária e forçada induziram níveis distintos de expressão de Hsp72 no miocárdio de ratas Wistar.


BACKGROUND: Physical exercise induces hemodynamic stress. OBJECTIVE: To evaluate if voluntary running and forced running induced different levels of stress protein (Hsp72) in the myocardium of female Wistar rats. METHODS: Female rats were randomly assigned to the following groups: forced treadmill running group (FR; n= 6), voluntary running group (VR; n=6) and control group (C; n=6). VR group animals had free access to running wheels, and those from FR group underwent a running program on a treadmill (18 m/min, 60 min/day, 5 days/wk) for 8 weeks. Left ventricle (LV) and right ventricle (RV) fragments were collected at sacrifice, and the relative immunoblot contents of stress protein (Hsp72) were determined. RESULTS: VR animals ran on average 4.87 km/wk, and FR rats ran 4.88 km/wk. Animals from VR and FR groups had less body weight gain (p<0.05) than those from C group (81.67 ± 11.95g vs 81.17 ± 10.18g vs 111.50 ± 2.26g, respectively). Heart weight/body weight ratio was not significantly different (p>0.05) among VR, FR and C groups (4.54 ± 0.79 mg/g vs 4.94 ± 0.89 mg/g vs 4.34 ± 0.87 mg/g, respectively). FR group animals had levels of Hsp72 (p<0.05) higher than those from VR, both in LV (287.45 ± 35.86 percent vs 135.59 ± 5.10 percent, respectively) and RV (241.31 ± 25.83 percent vs 137.91 ± 45.20 percent, respectively). CONCLUSION: Voluntary running and forced running induced different levels of Hsp72 in the myocardium of female Wistar rats.


FUNDAMENTO: El ejercicio físico promueve estrés hemodinámico. OBJETIVO: Probar si programas de entrenamiento con carreras voluntaria y forzada inducen niveles distintos de expresión de Hsp72 en el miocardio de ratas hembra Wistar. MÉTODOS: Ratas hembra Wistar fueron distribuidas en tres grupos (n = 6, cada uno): entrenadas con carrera voluntaria (ECV), entrenadas con carrera forzada (ECF) y grupo control (C). Los animales del ECV tuvieron libre acceso a la rueda de carrera voluntaria, mientras que los del ECF fueron sometidos a carrera forzada en cinta sin fin (18 m/min, 0 por ciento inclinación, 60 m/min, 5 días/sem) durante ocho semanas. Fragmentos de los ventrículos izquierdo (VI) y derecho (VD) se recolectaron para análisis de los niveles de Hsp72. RESULTADOS: Las ratas del grupo ECV corrieron, en promedio 4,87 km, y las del ECF, 4,88 km por semana. Los animales de los grupos ECV y ECF ganaron menos peso (p<0,05) que los del grupo C (81,67 ± 11,95 g vs. 81,17 ± 10,18 g vs. 111,50 ± 2,26 g, respectivamente). El peso relativo del corazón no fue diferente (p>0,05) entre los grupos ECV, ECF y C (4,54 ± 0,79 mg/g vs. 4,94 ± 0,89 mg/g vs. 4,34 ± 0,87 mg/g, respectivamente). Las ratas entrenadas con carrera presentaron niveles de Hsp72 mayores (p<0,05) que las que corrieron voluntariamente, en el VI (287,45 ± 35,86 por ciento vs. 135,59 ± 5,10 por ciento, respectivamente) y en el VD (241,31 ± 25,83 por ciento vs. 137,91 ± 45,20 por ciento, respectivamente). CONCLUSIÓN: Los programas de entrenamiento con carreras voluntaria y forzada inducen niveles distintos de expresión de Hsp72 en el miocardio de ratas Wistar.


Assuntos
Animais , Feminino , Ratos , /biossíntese , Miocárdio/metabolismo , Esforço Físico/fisiologia , Corrida/fisiologia , Peso Corporal/fisiologia , Métodos Epidemiológicos , Ventrículos do Coração/patologia , Modelos Animais , Miocárdio/patologia , Tamanho do Órgão/fisiologia , Condicionamento Físico Animal/fisiologia , Ratos Wistar
18.
Arq Bras Cardiol ; 93(5): 456-62, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20084306

RESUMO

BACKGROUND: Physical exercise induces hemodynamic stress. OBJECTIVE: To evaluate if voluntary running and forced running induced different levels of stress protein (Hsp72) in the myocardium of female Wistar rats. METHODS: Female rats were randomly assigned to the following groups: forced treadmill running group (FR; n= 6), voluntary running group (VR; n=6) and control group (C; n=6). VR group animals had free access to running wheels, and those from FR group underwent a running program on a treadmill (18 m/min, 60 min/day, 5 days/wk) for 8 weeks. Left ventricle (LV) and right ventricle (RV) fragments were collected at sacrifice, and the relative immunoblot contents of stress protein (Hsp72) were determined. RESULTS: VR animals ran on average 4.87 km/wk, and FR rats ran 4.88 km/wk. Animals from VR and FR groups had less body weight gain (p<0.05) than those from C group (81.67 +/- 11.95g vs 81.17 +/- 10.18g vs 111.50 +/- 2.26g, respectively). Heart weight/body weight ratio was not significantly different (p>0.05) among VR, FR and C groups (4.54 +/- 0.79 mg/g vs 4.94 +/- 0.89 mg/g vs 4.34 +/- 0.87 mg/g, respectively). FR group animals had levels of Hsp72 (p<0.05) higher than those from VR, both in LV (287.45 +/- 35.86 % vs 135.59 +/- 5.10 %, respectively) and RV (241.31 +/- 25.83 % vs 137.91 +/- 45.20 %, respectively). CONCLUSION: Voluntary running and forced running induced different levels of Hsp72 in the myocardium of female Wistar rats.


Assuntos
Proteínas de Choque Térmico HSP72/biossíntese , Miocárdio/metabolismo , Esforço Físico/fisiologia , Corrida/fisiologia , Animais , Peso Corporal/fisiologia , Métodos Epidemiológicos , Feminino , Ventrículos do Coração/patologia , Modelos Animais , Miocárdio/patologia , Tamanho do Órgão/fisiologia , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...