Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 3(9): 100742, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130480

RESUMO

Diets rich in added sugars are associated with metabolic diseases, and studies have shown a link between these pathologies and changes in the microbiome. Given the reported associations in animal models between the microbiome and brown adipose tissue (BAT) function, and the alterations in the microbiome induced by high-glucose or high-fructose diets, we investigated the potential causal link between high-glucose or -fructose diets and BAT dysfunction in humans. Primary outcomes are changes in BAT cold-induced thermogenesis and the fecal microbiome (clinicaltrials.gov, NCT03188835). We show that BAT glucose uptake, but not thermogenesis, is impaired by a high-fructose but not high-glucose diet, in the absence of changes in the gastrointestinal microbiome. We conclude that decreased BAT glucose metabolism occurs earlier than other pathophysiological abnormalities during fructose overconsumption in humans. This is a potential confounding factor for studies relying on 18F-FDG to assess BAT thermogenesis.


Assuntos
Tecido Adiposo Marrom , Microbioma Gastrointestinal , Tecido Adiposo Marrom/diagnóstico por imagem , Animais , Fluordesoxiglucose F18/metabolismo , Frutose/farmacologia , Glucose/metabolismo , Humanos
2.
Gastroenterology ; 163(5): 1351-1363.e15, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35810781

RESUMO

BACKGROUND & AIMS: Genes and gluten are necessary but insufficient to cause celiac disease (CeD). Altered gut microbiota has been implicated as an additional risk factor. Variability in sampling site may confound interpretation and mechanistic insight, as CeD primarily affects the small intestine. Thus, we characterized CeD microbiota along the duodenum and in feces and verified functional impact in gnotobiotic mice. METHODS: We used 16S rRNA gene sequencing (Illumina) and predicted gene function (PICRUSt2) in duodenal biopsies (D1, D2 and D3), aspirates, and stool from patients with active CeD and controls. CeD alleles were determined in consented participants. A subset of duodenal samples stratified according to similar CeD risk genotypes (controls DQ2-/- or DQ2+/- and CeD DQ2+/-) were used for further analysis and to colonize germ-free mice for gluten metabolism studies. RESULTS: Microbiota composition and predicted function in CeD was largely determined by intestinal location. In the duodenum, but not stool, there was higher abundance of Escherichia coli (D1), Prevotella salivae (D2), and Neisseria (D3) in CeD vs controls. Predicted bacterial protease and peptidase genes were altered in CeD and impaired gluten degradation was detected only in mice colonized with CeD microbiota. CONCLUSIONS: Our results showed luminal and mucosal microbial niches along the gut in CeD. We identified novel microbial proteolytic pathways involved in gluten detoxification that are impaired in CeD but not in controls carrying DQ2, suggesting an association with active duodenal inflammation. Sampling site should be considered a confounding factor in microbiome studies in CeD.


Assuntos
Doença Celíaca , Microbioma Gastrointestinal , Camundongos , Animais , Doença Celíaca/complicações , RNA Ribossômico 16S/genética , Glutens/metabolismo , Peptídeo Hidrolases
3.
FEMS Microbiol Lett ; 368(3)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33417698

RESUMO

Previous human milk studies have confirmed the existence of a highly diverse bacterial community using culture-independent and targeted culture-dependent techniques. However, culture-enriched molecular profiling of milk microbiota has not been done. Additionally, the impact of storage conditions and milk fractionation on microbiota composition is not understood. In this feasibility study, we optimized and applied culture-enriched molecular profiling to study culturable milk microbiota in eight milk samples collected from mothers of infants admitted to a neonatal intensive care unit. Fresh samples were immediately plated or stored at -80°C for 2 weeks (short-term frozen). Long-term samples were stored at -20°C for >6 months. Samples were cultured using 10 different culture media and incubated both aerobically and anaerobically. We successfully isolated major milk bacteria, including Streptococcus, Staphylococcus and Bifidobacterium, from fresh milk samples, but were unable to culture any bacteria from the long-term frozen samples. Short-term freezing shifted the composition of viable milk bacteria from the original composition in fresh samples. Nevertheless, the inter-individual variability of milk microbiota composition was observed even after short-term storage. There was no major difference in the overall milk microbiota composition between milk fractions in this feasibility study. This is among the first studies on culture-enriched molecular profiling of the milk microbiota demonstrating the effect of storage and fractionation on milk microbiota composition.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biodiversidade , Microbiologia de Alimentos , Leite Humano/microbiologia , Bactérias/classificação , Bactérias/genética , Técnicas de Cultura , Humanos , RNA Ribossômico 16S/genética
4.
J Immunol ; 202(10): 3041-3052, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30952815

RESUMO

Serotonin (5-hydroxytryptamine [5-HT]) is a key enteric signaling molecule that mediates various physiological processes in the gut. Enterochromaffin (EC) cells in the mucosal layer of the gut are the main source of 5-HT in the body and are situated in close proximity to the gut microbiota. In this study, we identify a pivotal role of TLR2 in 5-HT production in the gut. Antibiotic treatment reduces EC cell numbers and 5-HT levels in naive C57BL/6 mice, which is associated with downregulation of TLR2 expression but not TLR1 or TLR4. TLR2-deficient (Tlr2 -/-) and Myd88 -/- mice express lower EC cell numbers and 5-HT levels, whereas treatment with TLR2/1 agonist upregulates 5-HT production in irradiated C57BL/6 mice, which are reconstituted with Tlr2 -/- bone marrow cells, and in germ-free mice. Human EC cell line (BON-1 cells) release higher 5-HT upon TLR2/1 agonist via NF-κB pathway. Tlr2 -/- mice and anti-TLR2 Ab-treated mice infected with enteric parasite, Trichuris muris, exhibited attenuated 5-HT production, compared with infected wild-type mice. Moreover, excretory-secretory products from T. muris induce higher 5-HT production in BON-1 cells via TLR2 in a dose-dependent manner, whereby the effect of excretory-secretory products is abrogated by TLR2 antagonist. These findings not only suggest an important role of TLR2 in mucosal 5-HT production in the gut by resident microbiota as well as by a nematode parasite but also provide, to our knowledge, novel information on the potential benefits of targeting TLR2 in various gut disorders that exhibit aberrant 5-HT signaling.


Assuntos
Células Enterocromafins/imunologia , Serotonina/imunologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia , Tricuríase/imunologia , Trichuris/imunologia , Animais , Linhagem Celular , Células Enterocromafins/patologia , Microbioma Gastrointestinal/imunologia , Humanos , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Serotonina/genética , Transdução de Sinais/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Tricuríase/genética , Tricuríase/patologia
5.
Cell Mol Gastroenterol Hepatol ; 7(4): 709-728, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30716420

RESUMO

BACKGROUND & AIMS: Serotonin (5-hydroxytryptamine [5-HT]) is synthesized mainly within enterochromaffin (EC) cells in the gut, and tryptophan hydroxylase 1 (Tph1) is the rate-limiting enzyme for 5-HT synthesis in EC cells. Accumulating evidence suggests the importance of gut microbiota in intestinal inflammation. Considering the close proximity of EC cells and the microbes, we investigated the influence of gut-derived 5-HT on the microbiota and the susceptibility to colitis. METHODS: Gut microbiota of Tph1-/- and Tph1+/- mice were investigated by deep sequencing. Direct influence of 5-HT on bacteria was assessed by using in vitro system of isolated commensals. The indirect influence of 5-HT on microbiota was assessed by measuring antimicrobial peptides, specifically ß-defensins, in the colon of mice and HT-29 colonic epithelial cells. The impact of gut microbiota on the development of dextran sulfate sodium-induced colitis was assessed by transferring gut microbiota from Tph1-/- mice to Tph1+/- littermates and vice versa, as well as in germ-free mice. RESULTS: A significant difference in microbial composition between Tph1-/- and Tph1+/- littermates was observed. 5-HT directly stimulated and inhibited the growth of commensal bacteria in vitro, exhibiting a concentration-dependent and species-specific effect. 5-HT also inhibited ß-defensin production by HT-29 cells. Microbial transfer from Tph1-/- to Tph1+/- littermates and vice versa altered colitis severity, with microbiota from Tph1-/- mice mediating the protective effects. Furthermore, germ-free mice colonized with microbiota from Tph1-/- mice exhibited less severe dextran sulfate sodium-induced colitis. CONCLUSIONS: These findings demonstrate a novel role of gut-derived 5-HT in shaping gut microbiota composition in relation to susceptibility to colitis, identifying 5-HT-microbiota axis as a potential new therapeutic target in intestinal inflammatory disorders.


Assuntos
Colite/imunologia , Colite/patologia , Microbioma Gastrointestinal , Intestinos/imunologia , Serotonina/metabolismo , Transdução de Sinais , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Suscetibilidade a Doenças , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Heterozigoto , Inflamação/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/patologia , Masculino , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Receptores de Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triptofano Hidroxilase/deficiência , Triptofano Hidroxilase/metabolismo , Regulação para Cima/efeitos dos fármacos , beta-Defensinas/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 315(3): G420-G431, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29848021

RESUMO

Crohn's disease (CD), characterized by discontinuous intestinal injury and inflammation, has been associated with changes in luminal microbial composition and impaired barrier function. The relationships between visual features of intestinal injury, permeability, and the mucosa-associated microbiota are unclear. Individuals undergoing routine colonoscopy (controls) and patients with CD were evaluated by clinical parameters and confocal laser scanning endomicroscopic colonoscopy (CLE). Patients with CD were categorized as either CD with no injury (CD-NI) or CD with injury (CD-I). Colonic biopsies were taken from adjacent matched sites in all individuals, and CLE images from these sites were analyzed for vascular permeability. Microbial composition was evaluated by 16S rRNA gene sequencing of the V3 region, and the mycome was identified through internal transcribed spacer 2 sequencing. Subgroup analyses were performed for histology, paracellular permeability (Ussing chamber), and encroachment of bacteria (fluorescent in situ hybridization). CD-I patients showed an altered microbial community compared with both controls and CD-NI patients, with enrichment in Escherichia and a decrease in Firmicutes, including Lachnospira, Faecalibacterium, and Blautia. In CD-I patients, bacterial encroachment to host epithelial cells was greater in sites of injury than in matched biopsy sites. Biopsies from sites of injury also demonstrated greater vascular and paracellular permeability. Overall, CD-I patients showed an altered mucosal microbial community compared with CD-NI patients and controls. Matched biopsy samples in CD-I patients revealed that sites of injury, identified endoscopically, are characterized by increased encroachment of bacteria to host epithelial cells, associated with increased paracellular and vascular permeability, which may drive inflammation in CD. NEW & NOTEWORTHY Patients with Crohn's disease (CD) with areas of colonic injury have an altered microbial community compared with patients who have no endoscopic evidence of injury or active disease. Although matched biopsies from patients with colonic injury show no differences in the mucosa-associated microbiota, injured sites are associated with increased permeability and increased encroachment. Our results support the notion that dysbiotic communities within patients with colonic injury cause or permit disruption of the mucosal and endothelial layers in CD.


Assuntos
Colo , Doença de Crohn , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , Mucosa Intestinal , Intestinos , RNA Ribossômico 16S/genética , Biópsia/métodos , Colo/microbiologia , Colo/patologia , Colonoscopia/métodos , Doença de Crohn/imunologia , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Feminino , Humanos , Inflamação/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestinos/patologia , Intestinos/fisiopatologia , Masculino , Pessoa de Meia-Idade
7.
Front Microbiol ; 7: 2156, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119678

RESUMO

The Streptococcus Invasion Locus (Sil) was first described in Streptococcus pyogenes and Streptococcus pneumoniae, where it has been implicated in virulence. The two-component peptide signaling system consists of the SilA response regulator and SilB histidine kinase along with the SilCR signaling peptide and SilD/E export/processing proteins. The presence of an associated bacteriocin region suggests this system may play a role in competitive interactions with other microbes. Comparative analysis of 42 Streptococcus Anginosus/Milleri Group (SAG) genomes reveals this to be a hot spot for genomic variability. A cluster of bacteriocin/immunity genes is found adjacent to the sil system in most SAG isolates (typically 6-10 per strain). In addition, there were two distinct SilCR peptides identified in this group, denoted here as SilCRSAG-A and SilCRSAG-B, with corresponding alleles in silB. Our analysis of the 42 sil loci showed that SilCRSAG-A is only found in Streptococcus intermedius while all three species can carry SilCRSAG-B. In S. intermedius B196, a putative SilA operator is located upstream of bacteriocin gene clusters, implicating the sil system in regulation of microbe-microbe interactions at mucosal surfaces where the group resides. We demonstrate that S. intermedius B196 responds to its cognate SilCRSAG-A, and, less effectively, to SilCRSAG-B released by other Anginosus group members, to produce putative bacteriocins and inhibit the growth of a sensitive strain of S. constellatus.

9.
ISME J ; 9(5): 1246-59, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25575312

RESUMO

The upper respiratory tract (URT) is a crucial site for host defense, as it is home to bacterial communities that both modulate host immune defense and serve as a reservoir of potential pathogens. Young children are at high risk of respiratory illness, yet the composition of their URT microbiota is not well understood. Microbial profiling of the respiratory tract has traditionally focused on culturing common respiratory pathogens, whereas recent culture-independent microbiome profiling can only report the relative abundance of bacterial populations. In the current study, we used both molecular profiling of the bacterial 16S rRNA gene and laboratory culture to examine the bacterial diversity from the oropharynx and nasopharynx of 51 healthy children with a median age of 1.1 years (range 1-4.5 years) along with 19 accompanying parents. The resulting profiles suggest that in young children the nasopharyngeal microbiota, much like the gastrointestinal tract microbiome, changes from an immature state, where it is colonized by a few dominant taxa, to a more diverse state as it matures to resemble the adult microbiota. Importantly, this difference in bacterial diversity between adults and children accompanies a change in bacterial load of three orders of magnitude. This indicates that the bacterial communities in the nasopharynx of young children have a fundamentally different structure from those in adults and suggests that maturation of this community occurs sometime during the first few years of life, a period that includes ages at which children are at the highest risk for respiratory disease.


Assuntos
Infecções Bacterianas/microbiologia , Trato Gastrointestinal/microbiologia , Microbiota/imunologia , Nasofaringe/microbiologia , Orofaringe/microbiologia , Adulto , Fatores Etários , Infecções Bacterianas/diagnóstico , Carga Bacteriana , Criança , Pré-Escolar , DNA Bacteriano/genética , Voluntários Saudáveis , Humanos , Lactente , Filogenia , RNA Ribossômico 16S/genética , Streptococcus pneumoniae
10.
PLoS Biol ; 10(1): e1001252, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22303282

RESUMO

Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.


Assuntos
Bacillus subtilis/fisiologia , Retroalimentação Fisiológica , Algoritmos , Bacillus subtilis/citologia , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo Celular , Proliferação de Células , Fenômenos Cronobiológicos , Simulação por Computador , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Modelos Biológicos , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Esporos Bacterianos , Imagem com Lapso de Tempo
11.
Nature ; 465(7294): 86-90, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20418862

RESUMO

The Notch-Delta signalling pathway allows communication between neighbouring cells during development. It has a critical role in the formation of 'fine-grained' patterns, generating distinct cell fates among groups of initially equivalent neighbouring cells and sharply delineating neighbouring regions in developing tissues. The Delta ligand has been shown to have two activities: it transactivates Notch in neighbouring cells and cis-inhibits Notch in its own cell. However, it remains unclear how Notch integrates these two activities and how the resulting system facilitates pattern formation. Here we report the development of a quantitative time-lapse microscopy platform for analysing Notch-Delta signalling dynamics in individual mammalian cells, with the aim of addressing these issues. By controlling both cis- and trans-Delta concentrations, and monitoring the dynamics of a Notch reporter, we measured the combined cis-trans input-output relationship in the Notch-Delta system. The data revealed a striking difference between the responses of Notch to trans- and cis-Delta: whereas the response to trans-Delta is graded, the response to cis-Delta is sharp and occurs at a fixed threshold, independent of trans-Delta. We developed a simple mathematical model that shows how these behaviours emerge from the mutual inactivation of Notch and Delta proteins in the same cell. This interaction generates an ultrasensitive switch between mutually exclusive sending (high Delta/low Notch) and receiving (high Notch/low Delta) signalling states. At the multicellular level, this switch can amplify small differences between neighbouring cells even without transcription-mediated feedback. This Notch-Delta signalling switch facilitates the formation of sharp boundaries and lateral-inhibition patterns in models of development, and provides insight into previously unexplained mutant behaviours.


Assuntos
Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Receptor Notch1/genética
12.
Nature ; 460(7254): 510-4, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19578359

RESUMO

Development normally occurs similarly in all individuals within an isogenic population, but mutations often affect the fates of individual organisms differently. This phenomenon, known as partial penetrance, has been observed in diverse developmental systems. However, it remains unclear how the underlying genetic network specifies the set of possible alternative fates and how the relative frequencies of these fates evolve. Here we identify a stochastic cell fate determination process that operates in Bacillus subtilis sporulation mutants and show how it allows genetic control of the penetrance of multiple fates. Mutations in an intercompartmental signalling process generate a set of discrete alternative fates not observed in wild-type cells, including rare formation of two viable 'twin' spores, rather than one within a single cell. By genetically modulating chromosome replication and septation, we can systematically tune the penetrance of each mutant fate. Furthermore, signalling and replication perturbations synergize to significantly increase the penetrance of twin sporulation. These results suggest a potential pathway for developmental evolution between monosporulation and twin sporulation through states of intermediate twin penetrance. Furthermore, time-lapse microscopy of twin sporulation in wild-type Clostridium oceanicum shows a strong resemblance to twin sporulation in these B. subtilis mutants. Together the results suggest that noise can facilitate developmental evolution by enabling the initial expression of discrete morphological traits at low penetrance, and allowing their stabilization by gradual adjustment of genetic parameters.


Assuntos
Bacillus subtilis/fisiologia , Evolução Biológica , Regulação Bacteriana da Expressão Gênica , Bacillus subtilis/genética , Replicação do DNA , Esporos Bacterianos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...