Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 605(7909): 298-303, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508658

RESUMO

The cochlea uses two types of mechanosensory cell to detect sounds. A single row of inner hair cells (IHCs) synapse onto neurons to transmit sensory information to the brain, and three rows of outer hair cells (OHCs) selectively amplify auditory inputs1. So far, two transcription factors have been implicated in the specific differentiation of OHCs, whereas, to our knowledge, none has been identified in the differentiation of IHCs2-4. One such transcription factor for OHCs, INSM1, acts during a crucial embryonic period to consolidate the OHC fate, preventing OHCs from transdifferentiating into IHCs2. In the absence of INSM1, embryonic OHCs misexpress a core set of IHC-specific genes, which we predict are involved in IHC differentiation. Here we find that one of these genes, Tbx2, is a master regulator of IHC versus OHC differentiation in mice. Ablation of Tbx2 in embryonic IHCs results in their development as OHCs, expressing early OHC markers such as Insm1 and eventually becoming completely mature OHCs in the position of IHCs. Furthermore, Tbx2 is epistatic to Insm1: in the absence of both genes, cochleae generate only OHCs, which suggests that TBX2 is necessary for the abnormal transdifferentiation of INSM1-deficient OHCs into IHCs, as well as for normal IHC differentiation. Ablation of Tbx2 in postnatal, largely differentiated IHCs makes them transdifferentiate directly into OHCs, replacing IHC features with those of mature and not embryonic OHCs. Finally, ectopic expression of Tbx2 in OHCs results in their transdifferentiation into IHCs. Hence, Tbx2 is both necessary and sufficient to make IHCs distinct from OHCs and maintain this difference throughout development.


Assuntos
Diferenciação Celular , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Animais , Diferenciação Celular/genética , Cóclea/citologia , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Externas/citologia , Camundongos , Proteínas com Domínio T
2.
Nature ; 565(7737): E2, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30518865

RESUMO

In Figs. 1e and 2g of this Letter, the labels 'actin' and 'VGLUT3', respectively, should have been in red instead of green font. This has been corrected online.

3.
Nature ; 563(7733): 691-695, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305733

RESUMO

The mammalian cochlea contains two types of mechanosensory hair cell that have different and critical functions in hearing. Inner hair cells (IHCs), which have an elaborate presynaptic apparatus, signal to cochlear neurons and communicate sound information to the brain. Outer hair cells (OHCs) mechanically amplify sound-induced vibrations, providing enhanced sensitivity to sound and sharp tuning. Cochlear hair cells are solely generated during development, and hair cell death-most often of OHCs-is the most common cause of deafness. OHCs and IHCs, together with supporting cells, originate in embryos from the prosensory region of the otocyst, but how hair cells differentiate into two different types is unknown1-3. Here we show that Insm1, which encodes a zinc finger protein that is transiently expressed in nascent OHCs, consolidates their fate by preventing trans-differentiation into IHCs. In the absence of INSM1, many hair cells that are born as OHCs switch fates to become mature IHCs. To identify the genetic mechanisms by which Insm1 operates, we compared the transcriptomes of immature IHCs and OHCs, and of OHCs with and without INSM1. In OHCs that lack INSM1, a set of genes is upregulated, most of which are normally preferentially expressed by IHCs. The homeotic cell transformation of OHCs without INSM1 into IHCs reveals a mechanism by which these neighbouring mechanosensory cells begin to differ: INSM1 represses a core set of early IHC-enriched genes in embryonic OHCs and makes them unresponsive to an IHC-inducing gradient, so that they proceed to mature as OHCs. Without INSM1, some of the OHCs in which these few IHC-enriched transcripts are upregulated trans-differentiate into IHCs, identifying candidate genes for IHC-specific differentiation.


Assuntos
Transdiferenciação Celular/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Externas/citologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Proteínas Repressoras , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Regulação para Cima/genética
4.
J Digit Imaging ; 22(5): 437-48, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18454289

RESUMO

The in vivo assessment of physiological processes associated with microcirculation in the head and neck tissue by means of perfusion computed tomography is widely used in the management of patients with head and neck tumors. However, there is no systematic consideration of the total acquisition duration and placement of the scans. A simulation study for optimizing perfusion studies of extracranial head and neck tumors, with considerations of reducing radiation dose while maintaining accuracy of the perfusion parameters, is demonstrated here. The suggested that dual-phase optimized protocols may provide reliable estimations of the permeability surface area product as well as blood flow and volume without additional radiation burden and serious patient discomfort. These optimized protocols can potentially be useful in the clinical setting of examining patients with extracranial head and neck tumors.


Assuntos
Simulação por Computador , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Meios de Contraste/farmacocinética , Cinética , Modelos Biológicos , Método de Monte Carlo , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...