Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 374(6565): 351-354, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648325

RESUMO

Developing cardiovascular systems use mechanical forces to take shape, but how ubiquitous blood flow forces instruct local cardiac cell identity is still unclear. By manipulating mechanical forces in vivo, we show here that shear stress is necessary and sufficient to promote valvulogenesis. We found that valve formation is associated with the activation of an extracellular adenosine triphosphate (ATP)­dependent purinergic receptor pathway, specifically triggering calcium ion (Ca2+) pulses and nuclear factor of activated T cells 1 (Nfatc1) activation. Thus, mechanical forces are converted into discrete bioelectric signals by an ATP-Ca2+-Nfatc1­mechanosensitive pathway to generate positional information and control valve formation.


Assuntos
Valvas Cardíacas/crescimento & desenvolvimento , Resistência ao Cisalhamento , Estresse Mecânico , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Fenômenos Eletrofisiológicos , Células Endoteliais/fisiologia , Valvas Cardíacas/citologia , Valvas Cardíacas/metabolismo , Fatores de Transcrição NFATC/metabolismo , Receptores Purinérgicos P2/metabolismo , Peixe-Zebra
2.
Dev Dyn ; 250(12): 1759-1777, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34056790

RESUMO

BACKGROUND: Biomechanical stimuli are known to be important to cardiac development, but the mechanisms are not fully understood. Here, we pharmacologically disrupted the biomechanical environment of wild-type zebrafish embryonic hearts for an extended duration and investigated the consequent effects on cardiac function, morphological development, and gene expression. RESULTS: Myocardial contractility was significantly diminished or abolished in zebrafish embryonic hearts treated for 72 hours from 2 dpf with 2,3-butanedione monoxime (BDM). Image-based flow simulations showed that flow wall shear stresses were abolished or significantly reduced with high oscillatory shear indices. At 5 dpf, after removal of BDM, treated embryonic hearts were maldeveloped, having disrupted cardiac looping, smaller ventricles, and poor cardiac function (lower ejected flow, bulboventricular regurgitation, lower contractility, and slower heart rate). RNA sequencing of cardiomyocytes of treated hearts revealed 922 significantly up-regulated genes and 1,698 significantly down-regulated genes. RNA analysis and subsequent qPCR and histology validation suggested that biomechanical disruption led to an up-regulation of inflammatory and apoptotic genes and down-regulation of ECM remodeling and ECM-receptor interaction genes. Biomechanics disruption also prevented the formation of ventricular trabeculation along with notch1 and erbb4a down-regulation. CONCLUSIONS: Extended disruption of biomechanical stimuli caused maldevelopment, and potential genes responsible for this are identified.


Assuntos
Fenômenos Biomecânicos/efeitos dos fármacos , Diacetil/análogos & derivados , Coração/embriologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Fenômenos Biomecânicos/fisiologia , Diacetil/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiologia , Hidrodinâmica , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Organogênese/efeitos dos fármacos , Organogênese/genética , Organogênese/fisiologia , Estresse Mecânico , Peixe-Zebra/embriologia , Peixe-Zebra/genética
3.
Sci Rep ; 10(1): 18510, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116206

RESUMO

Accurate cardiac motion estimation from medical images such as ultrasound is important for clinical evaluation. We present a novel regularisation layer for cardiac motion estimation that will be applied after image registration and demonstrate its effectiveness. The regularisation utilises a spatio-temporal model of motion, b-splines of Fourier, to fit to displacement fields from pairwise image registration. In the process, it enforces spatial and temporal smoothness and consistency, cyclic nature of cardiac motion, and better adherence to the stroke volume of the heart. Flexibility is further given for inclusion of any set of registration displacement fields. The approach gave high accuracy. When applied to human adult Ultrasound data from a Cardiac Motion Analysis Challenge (CMAC), the proposed method is found to have 10% lower tracking error over CMAC participants. Satisfactory cardiac motion estimation is also demonstrated on other data sets, including human fetal echocardiography, chick embryonic heart ultrasound images, and zebrafish embryonic microscope images, with the average Dice coefficient between estimation motion and manual segmentation at 0.82-0.87. The approach of performing regularisation as an add-on layer after the completion of image registration is thus a viable option for cardiac motion estimation that can still have good accuracy. Since motion estimation algorithms are complex, dividing up regularisation and registration can simplify the process and provide flexibility. Further, owing to a large variety of existing registration algorithms, such an approach that is usable on any algorithm may be useful.


Assuntos
Ecocardiografia/métodos , Coração/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos , Animais , Artefatos , Inteligência Artificial , Embrião de Galinha , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Movimento (Física) , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração , Peixe-Zebra
4.
Biomech Model Mechanobiol ; 19(1): 221-232, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31446522

RESUMO

Abnormal blood flow mechanics can result in pathological heart malformation, underlining the importance of understanding embryonic cardiac fluid mechanics. In the current study, we performed image-based computational fluid dynamics simulation of the zebrafish embryonic heart ventricles and characterized flow mechanics, organ dynamics, and energy dynamics in detail. 4D scans of 5 days post-fertilization embryonic hearts with GFP-labelled myocardium were acquired using line-scan focal modulation microscopy. This revealed that the zebrafish hearts exhibited a wave-like contractile/relaxation motion from the inlet to the outlet during both systole and diastole, which we showed to be an energy efficient configuration. No impedance pumping effects of pressure and velocity waves were observed. Due to its tube-like configuration, inflow velocities were higher near the inlet and smaller at the outlet and vice versa for outflow velocities. This resulted in an interesting spatial wall shear stress (WSS) pattern where WSS waveforms near the inlet and those near the outlet were out of phase. There was large spatial variability in WSS magnitudes. Peak WSS was in the range of 47.5-130 dyne/cm2 at the inflow and outflow tracts, but were much smaller, in the range of 4-11 dyne/cm2, in the mid-ventricular segment. Due to very low Reynolds number and the highly viscous environment, intraventricular pressure gradients were high, suggesting substantial energy losses of flow through the heart.


Assuntos
Embrião não Mamífero/fisiologia , Coração/embriologia , Coração/fisiologia , Hidrodinâmica , Modelos Cardiovasculares , Peixe-Zebra/embriologia , Algoritmos , Animais , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Coração/diagnóstico por imagem , Contração Miocárdica , Função Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...