Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3372, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291151

RESUMO

Failed regeneration of myelin around neuronal axons following central nervous system damage contributes to nerve dysfunction and clinical decline in various neurological conditions, for which there is an unmet therapeutic demand. Here, we show that interaction between glial cells - astrocytes and mature myelin-forming oligodendrocytes - is a determinant of remyelination. Using in vivo/ ex vivo/ in vitro rodent models, unbiased RNA sequencing, functional manipulation, and human brain lesion analyses, we discover that astrocytes support the survival of regenerating oligodendrocytes, via downregulation of the Nrf2 pathway associated with increased astrocytic cholesterol biosynthesis pathway activation. Remyelination fails following sustained astrocytic Nrf2 activation in focally-lesioned male mice yet is restored by either cholesterol biosynthesis/efflux stimulation, or Nrf2 inhibition using the existing therapeutic Luteolin. We identify that astrocyte-oligodendrocyte interaction regulates remyelination, and reveal a drug strategy for central nervous system regeneration centred on targeting this interaction.


Assuntos
Astrócitos , Fator 2 Relacionado a NF-E2 , Masculino , Camundongos , Animais , Humanos , Astrócitos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Sistema Nervoso Central/metabolismo , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Colesterol/metabolismo
2.
Glia ; 70(5): 797-807, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34708884

RESUMO

Remyelination failure with aging and progression of neurodegenerative disorders contributes to axonal dysfunction, highlighting the importance of understanding the mechanisms underpinning this process to develop regenerative therapies. Central nervous system (CNS) macrophages, encompassing both resident microglia and blood monocyte-derived cells, play a crucial role in driving successful remyelination. Although there has been a focus on the critical roles of microglia in remyelination, the specific contribution of monocyte-derived macrophages is still not fully understood. Until recently, the lack of tools enabling distinction between CNS macrophage populations has hindered our understanding of monocyte influence on remyelination. Recent advances have allowed for identification and characterization of monocyte populations in health, aging and in neurodegenerative conditions like multiple sclerosis, indicating heterogeneity of monocyte subsets impacted by both intrinsic and extrinsic factors. Here, we discuss the new tools enabling distinction between macrophage populations and advancements in understanding the importance of monocytes in remyelination, and reflect on the potential for therapeutic targeting of monocytes to promote remyelination.


Assuntos
Remielinização , Sistema Nervoso Central/fisiologia , Macrófagos , Microglia/fisiologia , Monócitos , Remielinização/fisiologia
3.
Neural Regen Res ; 16(4): 614-617, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33063709

RESUMO

Cell transplantation has come to the forefront of regenerative medicine alongside the discovery and application of stem cells in both research and clinical settings. There are several types of stem cells currently being used for pre-clinical regenerative therapies, each with unique characteristics, benefits and limitations. This brief review will focus on recent basic science advancements made with embryonic stem cells and induced pluripotent stem cells. Both embryonic stem cells and induced pluripotent stem cells provide platforms for new neurons to replace dead and/or dying cells following injury. Due to their capacity for reprogramming and differentiation into any neuronal type, research in preclinical rodent models has shown that embryonic stem cells and induced pluripotent stem cells can integrate, survive and form connections in the nervous system similar to de novo cells. Going forward however, there are some limitations to consider with the use of either stem cell type. Ethically, embryonic stem cells are not an ideal source of cells, genetically, induced pluripotent stem cells are not ideal in terms of personalized treatment for those with certain genetic diseases the latter of which may guide regenerative medicine away from personalized stem cell based therapies and into optimized stem cell banks. Nonetheless, the potential of these stem cells in central nervous system regenerative therapy is only beginning to be appreciated. For example, through genetic modification, stem cells serve as ideal platforms to reintroduce missing or downregulated molecules into the nervous system to further induce regenerative growth. In this review, we highlight the limitations of stem cell based therapies whilst discussing some of the means of overcoming these limitations.

4.
Front Cell Neurosci ; 13: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809126

RESUMO

After spinal cord injury (SCI), regeneration of adult motor axons such as axons in the corticospinal tract (CST) is severely limited. Alongside the inhibitory lesion environment, most neuronal subtypes in the mature central nervous system (CNS) are intrinsically unrepairable. With age, expression of growth-promoting proteins in neurons, such as integrins, declines. Integrin receptors allow communication between the extracellular matrix (ECM) and cell cytoskeleton and their expression in axons facilitates growth and guidance throughout the ECM. The α9ß1 integrin heterodimer binds to tenascin-C (TN-C), an ECM glycoprotein expressed during development and after injury. In the mature CST however, expression of the α9 integrin subunit is downregulated, adding to the intrinsic inability of axons to regenerate. Our previous work has shown the α9 integrin subunit is not trafficked within axons of mature CST or rubrospinal tracts (RSTs). Thus, here we have utilized human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) to increase expression of α9 integrinwithin the developing rat CST. We demonstrate that human NPCs (hNPCs) express endogenous levels of both α9 and ß1 integrin subunits as well as cortical neuron markers such as chicken ovalbumin upstream promoter transcription factor (COUP-TF) interacting protein 2 (Ctip2) and T-box brain 1 (Tbr1). In addition, lentivirus-mediated α9 integrin overexpression in hNPCs resulted in increased neurite outgrowth in the presence of TN-C in vitro. Following transplantation into the sensorimotor cortex of newborn rats, both wild type (WT) and α9-expressing hNPCs extend along the endogenous CST and retain expression of α9 throughout the length of the axonal compartment for up to 8 weeks following transplantation. These data highlight the growth potential of transplanted human iPSCs which may be a future target for regenerative therapies after nervous system injury.

5.
Neural Plast ; 2018: 2952386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849554

RESUMO

The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a "developmental state" to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury.


Assuntos
Axônios/fisiologia , Líquido Extracelular/fisiologia , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Axônios/patologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Humanos , Bainha de Mielina/patologia , Bainha de Mielina/fisiologia , Traumatismos da Medula Espinal/patologia
6.
J Biophotonics ; 11(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28703472

RESUMO

A major challenge in biophotonics is multimodal imaging to obtain both morphological and molecular information at depth. We demonstrate a hybrid approach integrating optical coherence tomography (OCT) with wavelength modulated spatially offset Raman spectroscopy (WM-SORS). With depth colocalization obtained from the OCT, we can penetrate 1.2-mm deep into strong scattering media (lard) to acquire up to a 14-fold enhancement of a Raman signal from a hidden target (polystyrene) with a spatial offset. Our approach is capable of detecting both Raman and OCT signals for pharmaceutical particles embedded in turbid media and revealing the white matter at depth within a 0.6-mm thick brain tissue layer. This depth resolved label-free multimodal approach is a powerful route to analyze complex biomedical samples.


Assuntos
Imagem Multimodal/métodos , Análise Espectral Raman/métodos , Tomografia de Coerência Óptica/métodos , Animais , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Poliestirenos/química , Ratos
7.
Sci Rep ; 7(1): 1435, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469191

RESUMO

We demonstrate the first light sheet microscope using propagation invariant, accelerating Airy beams that operates both in single- and two-photon modes. The use of the Airy beam permits us to develop an ultra compact, high resolution light sheet system without beam scanning. In two-photon mode, an increase in the field of view over the use of a standard Gaussian beam by a factor of six is demonstrated. This implementation for light sheet microscopy opens up new possibilities across a wide range of biomedical applications, especially for the study of neuronal processes.

8.
Neural Regen Res ; 12(1): 27-30, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28250734

RESUMO

Each neuronal subtype is distinct in how it develops, responds to environmental cues, and whether it is capable of mounting a regenerative response following injury. Although the adult central nervous system (CNS) does not regenerate, several experimental interventions have been trialled with successful albeit limited instances of axonal repair. We highlight here some of these approaches including extracellular matrix (ECM) modification, cellular grafting, gene therapy-induced replacement of proteins, as well as application of biomaterials. We also review the recent report demonstrating the failure of axonal localization and transport of growth-promoting receptors within certain classes of mature neurons. More specifically, we discuss an inability of integrin receptors to localize within the axonal compartment of mature motor neurons such as in the corticospinal and rubrospinal tracts, whereas in immature neurons of those pathways and in mature sensory tracts such as in the optic nerve and dorsal column pathways these receptors readily localize within axons. Furthermore we assert that this failure of axonal localization contributes to the intrinsic inability of axonal regeneration. We conclude by highlighting the necessity for both combined therapies as well as a targeted approach specific to both age and neuronal subtype will be required to induce substantial CNS repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...