Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165609, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743747

RESUMO

Nicotinamide riboside kinase-2 (NRK-2), a muscle-specific ß1 integrin binding protein, predominantly expresses in skeletal muscle with a trace amount expressed in healthy cardiac tissue. NRK-2 expression dramatically increases in mouse and human ischemic heart however, the specific role of NRK-2 in the pathophysiology of ischemic cardiac diseases is unknown. We employed NRK2 knockout (KO) mice to identify the role of NRK-2 in ischemia-induced cardiac remodeling and dysfunction. Following myocardial infarction (MI), or sham surgeries, serial echocardiography was performed in the KO and littermate control mice. Cardiac contractile function rapidly declined and left ventricular interior dimension (LVID) was significantly increased in the ischemic KO vs. control mice at 2 weeks post-MI. An increase in mortality was observed in the KO vs. control group. The KO hearts displayed increased cardiac hypertrophy and heart failure reflected by morphometric analysis. Consistently, histological assessment revealed an extensive and thin scar and dilated LV chamber accompanied with elevated fibrosis in the KOs post-MI. Mechanistically, we observed that loss of NRK-2 enhanced p38α activation following ischemic injury. Consistently, ex vivo studies demonstrated that the gain of NRK-2 function suppresses the p38α as well as fibroblast activation (α-SMA expression) upon TGF-ß stimulation, and limits cardiomyocytes death upon hypoxia/re­oxygenation. Collectively our findings show, for the first time, that NRK-2 plays a critical role in heart failure progression following ischemic injury. NRK-2 deficiency promotes post-MI scar expansion, rapid LV chamber dilatation, cardiac dysfunction and fibrosis possibly due to increased p38α activation.


Assuntos
Insuficiência Cardíaca/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Isquemia Miocárdica/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais/fisiologia , Animais , Cardiomegalia/metabolismo , Feminino , Fibroblastos , Fibrose/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/fisiologia , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Remodelação Ventricular/fisiologia
2.
Circulation ; 140(22): 1820-1833, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31581792

RESUMO

BACKGROUND: Cardiac kinases play a critical role in the development of heart failure, and represent potential tractable therapeutic targets. However, only a very small fraction of the cardiac kinome has been investigated. To identify novel cardiac kinases involved in heart failure, we used an integrated transcriptomics and bioinformatics analysis and identified Homeodomain-Interacting Protein Kinase 2 (HIPK2) as a novel candidate kinase. The role of HIPK2 in cardiac biology is unknown. METHODS: We used the Expression2Kinase algorithm for the screening of kinase targets. To determine the role of HIPK2 in the heart, we generated cardiomyocyte (CM)-specific HIPK2 knockout and heterozygous mice. Heart function was examined by echocardiography, and related cellular and molecular mechanisms were examined. Adeno-associated virus serotype 9 carrying cardiac-specific constitutively active MEK1 (TnT-MEK1-CA) was administrated to rescue cardiac dysfunction in CM-HIPK2 knockout mice. RESULTS: To our knowledge, this is the first study to define the role of HIPK2 in cardiac biology. Using multiple HIPK2 loss-of-function mouse models, we demonstrated that reduction of HIPK2 in CMs leads to cardiac dysfunction, suggesting a causal role in heart failure. It is important to note that cardiac dysfunction in HIPK2 knockout mice developed with advancing age, but not during development. In addition, CM-HIPK2 knockout mice and CM-HIPK2 heterozygous mice exhibited a gene dose-response relationship of CM-HIPK2 on heart function. HIPK2 expression in the heart was significantly reduced in human end-stage ischemic cardiomyopathy in comparison to nonfailing myocardium, suggesting a clinical relevance of HIPK2 in cardiac biology. In vitro studies with neonatal rat ventricular CMscorroborated the in vivo findings. Specifically, adenovirus-mediated overexpression of HIPK2 suppressed the expression of heart failure markers, NPPA and NPPB, at basal condition and abolished phenylephrine-induced pathological gene expression. An array of mechanistic studies revealed impaired extracellular signal-regulated kinase 1/2 signaling in HIPK2-deficient hearts. An in vivo rescue experiment with adeno-associated virus serotype 9 TnT-MEK1-CA nearly abolished the detrimental phenotype of knockout mice, suggesting that impaired extracellular signal-regulated kinase signaling mediated apoptosis as the key factor driving the detrimental phenotype in CM-HIPK2 knockout mice hearts. CONCLUSIONS: Taken together, these findings suggest that CM-HIPK2 is required to maintain normal cardiac function via extracellular signal-regulated kinase signaling.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Insuficiência Cardíaca/enzimologia , Sistema de Sinalização das MAP Quinases , Miocárdio/enzimologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Biomarcadores/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/patologia , Proteínas Serina-Treonina Quinases/genética
3.
JCI Insight ; 4(18)2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31534054

RESUMO

Over one million Americans experience myocardial infarction (MI) annually, and the resulting scar and subsequent cardiac fibrosis gives rise to heart failure. A specialized cell-cell adhesion protein, cadherin-11 (CDH11), contributes to inflammation and fibrosis in rheumatoid arthritis, pulmonary fibrosis, and aortic valve calcification but has not been studied in myocardium after MI. MI was induced by ligation of the left anterior descending artery in mice with either heterozygous or homozygous knockout of CDH11, wild-type mice receiving bone marrow transplants from Cdh11-deficient animals, and wild-type mice treated with a functional blocking antibody against CDH11 (SYN0012). Flow cytometry revealed significant CDH11 expression in noncardiomyocyte cells after MI. Animals given SYN0012 had improved cardiac function, as measured by echocardiogram, reduced tissue remodeling, and altered transcription of inflammatory and proangiogenic genes. Targeting CDH11 reduced bone marrow-derived myeloid cells and increased proangiogenic cells in the heart 3 days after MI. Cardiac fibroblast and macrophage interactions increased IL-6 secretion in vitro. Our findings suggest that CDH11-expressing cells contribute to inflammation-driven fibrotic remodeling after MI and that targeting CDH11 with a blocking antibody improves outcomes by altering recruitment of bone marrow-derived cells, limiting the macrophage-induced expression of IL-6 by fibroblasts and promoting vascularization.


Assuntos
Caderinas/metabolismo , Infarto do Miocárdio/complicações , Miocárdio/patologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Transplante de Medula Óssea , Caderinas/antagonistas & inibidores , Caderinas/genética , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Adesão Celular/imunologia , Modelos Animais de Doenças , Ecocardiografia , Fibrose , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/prevenção & controle , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/imunologia , Ventrículos do Coração/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Miocárdio/imunologia , Remodelação Ventricular/imunologia
4.
PLoS One ; 14(4): e0215213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30978208

RESUMO

Type 1 diabetic Akita mice develop severe cardiac parasympathetic dysfunction that we have previously demonstrated is due at least in part to an abnormality in the response of the end organ to parasympathetic stimulation. Specifically, we had shown that hypoinsulinemia in the diabetic heart results in attenuation of the G-protein coupled inward rectifying K channel (GIRK) which mediates the negative chronotropic response to parasympathetic stimulation due at least in part to decreased expression of the GIRK1 and GIRK4 subunits of the channel. We further demonstrated that the expression of GIRK1 and GIRK4 is under the control of the Sterol Regulatory element Binding Protein (SREBP-1), which is also decreased in response to hypoinsulinemia. Finally, given that hyperactivity of Glycogen Synthase Kinase (GSK)3ß, had been demonstrated in the diabetic heart, we demonstrated that treatment of Akita mice with Li+, an inhibitor of GSK3ß, increased parasympathetic responsiveness and SREBP-1 levels consistent with the conclusion that GSK3ß might regulate IKACh via an effect on SREBP-1. However, inhibitor studies were complicated by lack of specificity for GSK3ß. Here we generated an Akita mouse with cardiac specific inducible knockout of GSK3ß. Using this mouse, we demonstrate that attenuation of GSK3ß expression is associated with an increase in parasympathetic responsiveness measured as an increase in the heart rate response to atropine from 17.3 ± 3.5% (n = 8) prior to 41.2 ± 5.4% (n = 8, P = 0.017), an increase in the duration of carbamylcholine mediated bradycardia from 8.43 ± 1.60 min (n = 7) to 12.71 ± 2.26 min (n = 7, P = 0.028) and an increase in HRV as measured by an increase in the high frequency fraction from 40.78 ± 3.86% to 65.04 ± 5.64 (n = 10, P = 0.005). Furthermore, patch clamp measurements demonstrated a 3-fold increase in acetylcholine stimulated peak IKACh in atrial myocytes from GSK3ß deficiency mice compared with control. Finally, western blot analysis of atrial extracts from knockout mice demonstrated increased levels of SREBP-1, GIRK1 and GIRK4 compared with control. Taken together with our prior observations, these data establish a role of increased GSK3ß activity in the pathogenesis of parasympathetic dysfunction in type 1 diabetes via the regulation of IKACh and GIRK1/4 expression.


Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Glicogênio Sintase Quinase 3 beta/deficiência , Miócitos Cardíacos/enzimologia , Sistema Nervoso Parassimpático/fisiopatologia , Animais , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Átrios do Coração/inervação , Átrios do Coração/fisiopatologia , Frequência Cardíaca/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
5.
J Mol Cell Cardiol ; 130: 65-75, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30928428

RESUMO

Chronic pressure-overload (PO)- induced cardiomyopathy is one of the leading causes of left ventricular (LV) remodeling and heart failure. The role of the α isoform of glycogen synthase kinase-3 (GSK-3α) in PO-induced cardiac remodeling is unclear and its downstream molecular targets are largely unknown. To investigate the potential roles of GSK-3α, cardiomyocyte-specific GSK-3α conditional knockout (cKO) and control mice underwent trans-aortic constriction (TAC) or sham surgeries. Cardiac function in the cKOs and littermate controls declined equally up to 2 weeks of TAC. At 4 week, cKO animals retained concentric LV remodeling and showed significantly less decline in contractile function both at systole and diastole, vs. controls which remained same until the end of the study (6 wk). Histological analysis confirmed preservation of LV chamber and protection against TAC-induced cellular hypertrophy in the cKO. Consistent with attenuated hypertrophy, significantly lower level of cardiomyocyte apoptosis was observed in the cKO. Mechanistically, GSK-3α was found to regulate mitochondrial permeability transition pore (mPTP) opening and GSK-3α-deficient mitochondria showed delayed mPTP opening in response to Ca2+ overload. Consistently, overexpression of GSK-3α in cardiomyocytes resulted in elevated Bax expression, increased apoptosis, as well as a reduction of maximum respiration capacity and cell viability. Taken together, we show for the first time that GSK-3α regulates mPTP opening under pathological conditions, likely through Bax overexpression. Genetic ablation of cardiomyocyte GSK-3α protects against chronic PO-induced cardiomyopathy and adverse LV remodeling, and preserves contractile function. Selective inhibition of GSK-3α using isoform-specific inhibitors could be a viable therapeutic strategy to limit PO-induced heart failure.


Assuntos
Apoptose , Cardiomegalia/enzimologia , Quinase 3 da Glicogênio Sintase/metabolismo , Insuficiência Cardíaca/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Miócitos Cardíacos/enzimologia , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Quinase 3 da Glicogênio Sintase/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/genética , Poro de Transição de Permeabilidade Mitocondrial , Contração Miocárdica/genética , Miócitos Cardíacos/patologia , Remodelação Ventricular/genética
6.
JACC Basic Transl Sci ; 4(1): 41-53, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847418

RESUMO

The role of the transforming growth factor (TGF)-ß pathway in myocardial fibrosis is well recognized. However, the precise role of this signaling axis in cardiomyocyte (CM) biology is not defined. In TGF-ß signaling, SMAD4 acts as the central intracellular mediator. To investigate the role of TGF-ß signaling in CM biology, the authors deleted SMAD4 in adult mouse CMs. We demonstrate that CM-SMAD4-dependent TGF-ß signaling is critical for maintaining cardiac function, sarcomere kinetics, ion-channel gene expression, and cardiomyocyte survival. Thus, our findings raise a significant concern regarding the therapeutic approaches that rely on systemic inhibition of the TGF-ß pathway for the management of myocardial fibrosis.

7.
Cardiovasc Res ; 115(5): 966-977, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30629146

RESUMO

AIMS: Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myelogenous leukaemia (CML). However, cardiotoxicity of these agents remains a serious concern. The underlying mechanism of these adverse cardiac effects is largely unknown. Delineation of the underlying mechanisms of TKIs associated cardiac dysfunction could guide potential prevention strategies, rescue approaches, and future drug design. This study aimed to determine the cardiotoxic potential of approved CML TKIs, define the associated signalling mechanism and identify potential alternatives. METHODS AND RESULTS: In this study, we employed a zebrafish transgenic BNP reporter line that expresses luciferase under control of the nppb promoter (nppb:F-Luciferase) to assess the cardiotoxicity of all approved CML TKIs. Our in vivo screen identified ponatinib as the most cardiotoxic agent among the approved CML TKIs. Then using a combination of zebrafish and isolated neonatal rat cardiomyocytes, we delineated the signalling mechanism of ponatinib-induced cardiotoxicity by demonstrating that ponatinib inhibits cardiac prosurvival signalling pathways AKT and extra-cellular-signal-regulated kinase (ERK), and induces cardiomyocyte apoptosis. As a proof of concept, we augmented AKT and ERK signalling by administration of Neuregulin-1ß (NRG-1ß), and this prevented ponatinib-induced cardiomyocyte apoptosis. We also demonstrate that ponatinib-induced cardiotoxicity is not mediated by inhibition of fibroblast growth factor signalling, a well-known target of ponatinib. Finally, our comparative profiling for the cardiotoxic potential of CML approved TKIs, identified asciminib (ABL001) as a potentially much less cardiotoxic treatment option for CML patients with the T315I mutation. CONCLUSION: Herein, we used a combination of in vivo and in vitro methods to systematically screen CML TKIs for cardiotoxicity, identify novel molecular mechanisms for TKI cardiotoxicity, and identify less cardiotoxic alternatives.


Assuntos
Antineoplásicos/toxicidade , Cardiopatias/induzido quimicamente , Imidazóis/toxicidade , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Piridazinas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Cardiotoxicidade , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/prevenção & controle , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Niacinamida/análogos & derivados , Niacinamida/toxicidade , Estudo de Prova de Conceito , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/toxicidade , Ratos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
Cardiovasc Res ; 115(1): 20-30, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321309

RESUMO

With an estimated 38 million current patients, heart failure (HF) is a leading cause of morbidity and mortality worldwide. Although the aetiology differs, HF is largely a disease of cardiomyocyte (CM) death or dysfunction. Due to the famously limited amount of regenerative capacity of the myocardium, the only viable option for advanced HF patients is cardiac transplantation; however, donor's hearts are in very short supply. Thus, novel regenerative strategies are urgently needed to reconstitute the injured hearts. Emerging data from our lab and others have elucidated that CM-specific deletion of glycogen synthase kinase (GSK)-3 family of kinases induces CM proliferation, and the degree of proliferation is amplified in the setting of cardiac stress. If this proliferation is sufficiently robust, one could induce meaningful regeneration without the need for delivering exogenous cells to the injured myocardium (i.e. cardiac regeneration in situ). Herein, we will discuss the emerging role of the GSK-3s in CM proliferation and differentiation, including their potential implications in cardiac regeneration. The underlying molecular interactions and cross-talk among signalling pathways will be discussed. We will also review the specificity and limitations of the available small molecule inhibitors targeting GSK-3 and their potential applications to stimulate the endogenous cardiac regenerative responses to repair the injured heart.


Assuntos
Proliferação de Células/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Regeneração/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Via de Sinalização Hippo , Humanos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Neuregulina-1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
10.
Int J Cardiol ; 259: 145-152, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29398139

RESUMO

BACKGROUND AND RATIONALE: Obesity, an independent risk factor for the development of myocardial diseases is a growing healthcare problem worldwide. It's well established that GSK-3ß is critical to cardiac pathophysiology. However, the role cardiomyocyte (CM) GSK-3ß in diet-induced cardiac dysfunction is unknown. METHODS: CM-specific GSK-3ß knockout (CM-GSK-3ß-KO) and littermate controls (WT) mice were fed either a control diet (CD) or high-fat diet (HFD) for 55weeks. Cardiac function was assessed by transthoracic echocardiography. RESULTS: At baseline, body weights and cardiac function were comparable between the WT and CM-GSK-3ß-KOs. However, HFD-fed CM-GSK-3ß-KO mice developed severe cardiac dysfunction. Consistently, both heart weight/tibia length and lung weight/tibia length were significantly elevated in the HFD-fed CM-GSK-3ß-KO mice. The impaired cardiac function and adverse ventricular remodeling in the CM-GSK-3ß-KOs were independent of body weight or the lean/fat mass composition as HFD-fed CM-GSK-3ß-KO and controls demonstrated comparable body weight and body masses. At the molecular level, on a CD, CM-GSK-3α compensated for the loss of CM-GSK-3ß, as evident by significantly reduced GSK-3αs21 phosphorylation (activation) resulting in a preserved canonical ß-catenin ubiquitination pathway and cardiac function. However, this protective compensatory mechanism is lost with HFD, leading to excessive accumulation of ß-catenin in HFD-fed CM-GSK-3ß-KO hearts, resulting in adverse ventricular remodeling and cardiac dysfunction. CONCLUSION: In summary, these results suggest that cardiac GSK-3ß is crucial to protect against obesity-induced adverse ventricular remodeling and cardiac dysfunction.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Deleção de Genes , Glicogênio Sintase Quinase 3 beta/deficiência , Miócitos Cardíacos/enzimologia , Obesidade/enzimologia , Animais , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Obesidade/genética , Obesidade/patologia
11.
Sci Rep ; 7(1): 17682, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247183

RESUMO

Glycogen synthase kinase-3 (GSK3) regulates many physiological processes through phosphorylation of a diverse array of substrates. Inhibitors of GSK3 have been generated as potential therapies in several diseases, however the vital role GSK3 plays in cell biology makes the clinical use of GSK3 inhibitors potentially problematic. A clearer understanding of true physiological and pathophysiological substrates of GSK3 should provide opportunities for more selective, disease specific, manipulation of GSK3. To identify kinetically favourable substrates we performed a GSK3 substrate screen in heart tissue. Rab-GTPase binding effector protein 2 (RABEP2) was identified as a novel GSK3 substrate and GSK3 phosphorylation of RABEP2 at Ser200 was enhanced by prior phosphorylation at Ser204, fitting the known consensus sequence for GSK3 substrates. Both residues are phosphorylated in cells while only Ser200 phosphorylation is reduced following inhibition of GSK3. RABEP2 function was originally identified as a Rab5 binding protein. We did not observe co-localisation of RABEP2 and Rab5 in cells, while ectopic expression of RABEP2 had no effect on endosomal recycling. The work presented identifies RABEP2 as a novel primed substrate of GSK3, and thus a potential biomarker for GSK3 activity, but understanding how phosphorylation regulates RABEP2 function requires more information on physiological roles of RABEP2.


Assuntos
Quinases da Glicogênio Sintase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas rab5 de Ligação ao GTP/metabolismo
12.
Nat Genet ; 49(9): 1346-1353, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28783163

RESUMO

Adult mammalian cardiomyocyte regeneration after injury is thought to be minimal. Mononuclear diploid cardiomyocytes (MNDCMs), a relatively small subpopulation in the adult heart, may account for the observed degree of regeneration, but this has not been tested. We surveyed 120 inbred mouse strains and found that the frequency of adult mononuclear cardiomyocytes was surprisingly variable (>7-fold). Cardiomyocyte proliferation and heart functional recovery after coronary artery ligation both correlated with pre-injury MNDCM content. Using genome-wide association, we identified Tnni3k as one gene that influences variation in this composition and demonstrated that Tnni3k knockout resulted in elevated MNDCM content and increased cardiomyocyte proliferation after injury. Reciprocally, overexpression of Tnni3k in zebrafish promoted cardiomyocyte polyploidization and compromised heart regeneration. Our results corroborate the relevance of MNDCMs in heart regeneration. Moreover, they imply that intrinsic heart regeneration is not limited nor uniform in all individuals, but rather is a variable trait influenced by multiple genes.


Assuntos
Diploide , Coração/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Regeneração/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Immunoblotting , Hibridização in Situ Fluorescente , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Miocárdio/citologia , Miócitos Cardíacos/citologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Regeneração/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
13.
J Mol Cell Cardiol ; 110: 109-120, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28756206

RESUMO

Nearly every form of the heart disease is associated with myocardial fibrosis, which is characterized by the accumulation of activated cardiac fibroblasts (CFs) and excess deposition of extracellular matrix (ECM). Although, CFs are the primary mediators of myocardial fibrosis in a diseased heart, in the traditional view, activated CFs (myofibroblasts) and resulting fibrosis were simply considered the secondary consequence of the disease, not the cause. Recent studies from our lab and others have challenged this concept by demonstrating that fibroblast activation and fibrosis are not simply the secondary consequence of a diseased heart, but are crucial for mediating various myocardial disease processes. In regards to the mechanism, the vast majority of literature is focused on the direct role of canonical SMAD-2/3-mediated TGF-ß signaling to govern the fibrogenic process. Herein, we will discuss the emerging role of the GSK-3ß, ß-catenin and TGF-ß1-SMAD-3 signaling network as a critical regulator of myocardial fibrosis in the diseased heart. The underlying molecular interactions and cross-talk among signaling pathways will be discussed. We will primarily focus on recent in vivo reports demonstrating that CF-specific genetic manipulation can lead to aberrant myocardial fibrosis and sturdy cardiac phenotype. This will allow for a better understanding of the driving role of CFs in the myocardial disease process. We will also review the specificity and limitations of the currently available genetic tools used to study myocardial fibrosis and its associated mechanisms. A better understanding of the GSK-3ß, ß-catenin and SMAD-3 signaling network may provide a novel therapeutic target for the management of myocardial fibrosis in the diseased heart.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , beta Catenina/metabolismo , Animais , Fibrose , Humanos
14.
J Am Heart Assoc ; 6(5)2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487390

RESUMO

BACKGROUND: The amino acid response (AAR) is an evolutionarily conserved protective mechanism activated by amino acid deficiency through a key kinase, general control nonderepressible 2. In addition to mobilizing amino acids, the AAR broadly affects gene and protein expression in a variety of pathways and elicits antifibrotic, autophagic, and anti-inflammatory activities. However, little is known regarding its role in cardiac stress. Our aim was to investigate the effects of halofuginone, a prolyl-tRNA synthetase inhibitor, on the AAR pathway in cardiac fibroblasts, cardiomyocytes, and in mouse models of cardiac stress and failure. METHODS AND RESULTS: Consistent with its ability to inhibit prolyl-tRNA synthetase, halofuginone elicited a general control nonderepressible 2-dependent activation of the AAR pathway in cardiac fibroblasts as evidenced by activation of known AAR target genes, broad regulation of the transcriptome and proteome, and reversal by l-proline supplementation. Halofuginone was examined in 3 mouse models of cardiac stress: angiotensin II/phenylephrine, transverse aortic constriction, and acute ischemia reperfusion injury. It activated the AAR pathway in the heart, improved survival, pulmonary congestion, left ventricle remodeling/fibrosis, and left ventricular function, and rescued ischemic myocardium. In human cardiac fibroblasts, halofuginone profoundly reduced collagen deposition in a general control nonderepressible 2-dependent manner and suppressed the extracellular matrix proteome. In human induced pluripotent stem cell-derived cardiomyocytes, halofuginone blocked gene expression associated with endothelin-1-mediated activation of pathologic hypertrophy and restored autophagy in a general control nonderepressible 2/eIF2α-dependent manner. CONCLUSIONS: Halofuginone activated the AAR pathway in the heart and attenuated the structural and functional effects of cardiac stress.


Assuntos
Aminoácidos/metabolismo , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Insuficiência Cardíaca/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Piperidinas/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Quinazolinonas/farmacologia , Estresse Fisiológico , Aminoácidos/deficiência , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/metabolismo , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
15.
PLoS One ; 12(1): e0169964, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28129334

RESUMO

Sunitinib is a tyrosine kinase inhibitor approved for the treatment of multiple solid tumors. However, cardiotoxicity is of increasing concern, with a need to develop rational mechanism driven approaches for the early detection of cardiac dysfunction. We sought to interrogate changes in cardiac energy substrate usage during sunitinib treatment, hypothesising that these changes could represent a strategy for the early detection of cardiotoxicity. Balb/CJ mice or Sprague-Dawley rats were treated orally for 4 weeks with 40 or 20 mg/kg/day sunitinib. Cardiac positron emission tomography (PET) was implemented to investigate alterations in myocardial glucose and oxidative metabolism. Following treatment, blood pressure increased, and left ventricular ejection fraction decreased. Cardiac [18F]-fluorodeoxyglucose (FDG)-PET revealed increased glucose uptake after 48 hours. [11C]Acetate-PET showed decreased myocardial perfusion following treatment. Electron microscopy revealed significant lipid accumulation in the myocardium. Proteomic analyses indicated that oxidative metabolism, fatty acid ß-oxidation and mitochondrial dysfunction were among the top myocardial signalling pathways perturbed. Sunitinib treatment results in an increased reliance on glycolysis, increased myocardial lipid deposition and perturbed mitochondrial function, indicative of a fundamental energy crisis resulting in compromised myocardial energy metabolism and function. Our findings suggest that a cardiac PET strategy may represent a rational approach to non-invasively monitor metabolic pathway remodeling following sunitinib treatment.


Assuntos
Coração/diagnóstico por imagem , Indóis/efeitos adversos , Redes e Vias Metabólicas/efeitos dos fármacos , Tomografia por Emissão de Pósitrons , Pirróis/efeitos adversos , Animais , Fluordesoxiglucose F18/uso terapêutico , Coração/efeitos dos fármacos , Humanos , Indóis/administração & dosagem , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Proteômica , Pirróis/administração & dosagem , Ratos , Ratos Sprague-Dawley , Sunitinibe , Função Ventricular Esquerda/efeitos dos fármacos
17.
Circ Res ; 118(8): 1208-22, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976650

RESUMO

RATIONALE: Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3ß leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. OBJECTIVE: To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3ß in heart function. METHODS AND RESULTS: We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe-induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. CONCLUSIONS: Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/mortalidade , Quinase 3 da Glicogênio Sintase/deficiência , Mitose/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Cardiomiopatia Dilatada/patologia , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia
18.
PLoS One ; 11(2): e0145937, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26840448

RESUMO

INTRODUCTION: Left ventricular dysfunction is a frequent and potentially severe side effect of many tyrosine kinase inhibitors (TKI). The mode of toxicity is not identified, but may include impairment of mitochondrial or sarcomeric function, autophagy or angiogenesis, either as an on-target or off-target mechanism. METHODS AND RESULTS: We studied concentration-response curves and time courses for nine TKIs in three-dimensional, force generating engineered heart tissue (EHT) from neonatal rat heart cells. We detected a concentration- and time-dependent decline in contractile force for gefitinib, lapatinib, sunitinib, imatinib, sorafenib, vandetanib and lestaurtinib and no decline in contractile force for erlotinib and dasatinib after 96 hours of incubation. The decline in contractile force was associated with an impairment of autophagy (LC3 Western blot) and appearance of autophagolysosomes (transmission electron microscopy). CONCLUSION: This study demonstrates the feasibility to study TKI-mediated force effects in EHTs and identifies an association between a decline in contractility and inhibition of autophagic flux.


Assuntos
Cardiotoxinas/farmacologia , Contração Miocárdica/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Proteínas Tirosina Quinases/antagonistas & inibidores , Engenharia Tecidual , Animais , Autofagia/efeitos dos fármacos , Estudos de Viabilidade , Miócitos Cardíacos/citologia , Miócitos Cardíacos/diagnóstico por imagem , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Ratos Wistar , Engenharia Tecidual/métodos , Ultrassonografia
20.
JACC Basic Transl Sci ; 1(5): 386-398, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28713868

RESUMO

Cardiotoxicity is a well-established complication of oncology therapies. Cardiomyopathy resulting from anthracyclines is a classic example. In the past decade, an explosion of novel cancer therapies, often targeted and more specific than traditional therapies, has revolutionized oncology therapy and dramatically changed cancer prognosis. However, some of these therapies have introduced an assortment of cardiovascular (CV) complications. At times, these devastating outcomes have only become apparent after drug approval and have limited the use of potent therapies. There is a growing need for better testing platforms, both for CV toxicity screening, as well as for elucidating mechanisms of cardiotoxicities of approved cancer therapies. This review discusses the utility of nonclinical models (in vitro, in vivo, & in silico) available and highlights recent advancements in modalities like human stem cell-derived cardiomyocytes for developing more comprehensive cardiotoxicity testing and new means of cardioprotection with targeted anticancer therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...