Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 14(6): 2550-2568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37727078

RESUMO

BACKGROUND: Causes and mechanisms underlying cancer cachexia are not fully understood, and currently, no therapeutic approaches are available to completely reverse the cachectic phenotype. Interleukin-6 (IL-6) has been extensively described as a key factor in skeletal muscle physiopathology, exerting opposite roles through different signalling pathways. METHODS: We employed a three-dimensional ex vivo muscle engineered tissue (X-MET) to model cancer-associated cachexia and to study the effectiveness of selective inhibition of IL-6 transignalling in counteracting the cachectic phenotype. Conditioned medium (CM) derived from C26 adenocarcinoma cells was used as a source of soluble factors contributing to the establishment of cancer cachexia in the X-MET model. A dose of 1.2 ng/mL of glycoprotein-130 fused chimaera (gp130Fc) was added to cachectic culture medium to neutralize IL-6 transignalling. RESULTS: C26-conditioned medium induced a cachectic-like phenotype in the X-MET, leading to a decline of muscle mass (-60%; P < 0.001), a reduction in myosin expression (-92.4%; P < 0.005) and a reduction of the contraction frequency spectrum (-94%). C26-conditioned medium contains elevated amounts of IL-6 (8.61 ± 4.09 pg/mL) and IL6R (56.85 ± 10.96 pg/mL). These released factors activated the signal transducer and activator of transcription 3 (STAT3) signalling in the C26_CM X-MET system (phosphorylated STAT3/TOTAL +54.6%; P < 0.005), which in turn promote an enhancement of Il-6 (+69.2%; P < 0.05) and Il6r (+43%; P < 0.05) gene expression, suggesting the induction of a feed-forward loop. The selective neutralization of IL-6 transignalling, by gp130Fc, in C26_CM X-MET prevented the hyperactivation of STAT3 (-55.8%; P < 0.005), countered the reduction of cross-sectional area (+28.2%; P < 0.05) and reduced the expression of proteolytic factors including muscle ring finger-1 (-88%; P < 0.005) and ATROGIN1 (-92%; P < 0.05), thus preserving the robustness and increasing the contractile force (+20%) of the three-dimensional muscle system. Interestingly, the selective inhibition of IL-6 transignalling modulated gene regulatory networks involved in myogenesis and apoptosis, normalizing the expression of pro-apoptotic miRNAs, including miR-31 (-53.2%; P < 0.05) and miR-34c (-65%; P < 0.005), and resulting in the reduction of apoptotic pathways highlighted by the sensible reduction of cleaved caspase 3 (-92.5%; P < 0.005) in gp130Fc-treated C26_CM X-MET. CONCLUSIONS: IL-6 transignalling appeared as a promising target to counter cancer cachexia-related alterations. The X-MET model has proven to be a reliable drug-screening tool to identify novel therapeutic approaches and to test them in preclinical studies, significantly reducing the use of animal models.


Assuntos
MicroRNAs , Neoplasias , Animais , Caquexia/patologia , Interleucina-6 , Meios de Cultivo Condicionados/farmacologia , Neoplasias/complicações
2.
Cell Metab ; 35(3): 379-381, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889277

RESUMO

Aging results from the combination of complex processes still largely undefined. In this issue, Benjamin et al. use multiomic analysis to reveal a causative role of altered glutathione (GSH) synthesis and metabolism in age-dependent muscle stem cell (MuSC) dysfunction, casting light on novel mechanisms regulating stem cell function and on therapeutic approaches to improve defective regeneration in the aged muscle.


Assuntos
Músculo Esquelético , Células-Tronco , Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Glutationa/metabolismo
3.
Ageing Res Rev ; 80: 101697, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850167

RESUMO

Interleukin-6 is a pleiotropic cytokine regulating different tissues and organs in diverse and sometimes discrepant ways. The dual and sometime hermetic nature of IL-6 action has been highlighted in several contexts and can be explained by the concept of hormesis, in which beneficial or toxic effects can be induced by the same molecule depending on the intensity, persistence, and nature of the stimulation. According with hormesis, a low and/or controlled IL-6 release is associated with anti-inflammatory, antioxidant, and pro-myogenic actions, whereas increased systemic levels of IL-6 can induce pro-inflammatory, pro-oxidant and pro-fibrotic responses. However, many aspects regarding the multifaceted action of IL-6 and the complex nature of its signal transduction remains to be fully elucidated. In this review we collect mechanistic insight into the molecular networks contributing to normal or pathologic changes during advancing age and in chronic diseases. We point out the involvement of IL-6 deregulation in aging-related diseases, dissecting the hormetic action of this key mediator in different tissues, with a special focus on skeletal muscle. Since IL-6 can act as an enhancer of detrimental factor associated with both aging and pathologic conditions, such as chronic inflammation and oxidative stress, this cytokine could represent a "Gerokine", a determinant of the switch from physiologic aging to age-related diseases.


Assuntos
Envelhecimento , Inflamação/metabolismo , Interleucina-6 , Envelhecimento/fisiologia , Relação Dose-Resposta Imunológica , Regulação da Expressão Gênica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Estresse Oxidativo , Transdução de Sinais
4.
J Cachexia Sarcopenia Muscle ; 13(2): 1339-1359, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170869

RESUMO

BACKGROUND: Histone deacetylase 4 (HDAC4) is a stress-responsive factor that mediates multiple cellular responses. As a member of class IIa HDACs, HDAC4 shuttles between the nucleus and the cytoplasm; however, HDAC4 cytoplasmic functions have never been fully investigated. Duchenne muscular dystrophy (DMD) is a genetic, progressive, incurable disorder, characterized by muscle wasting, which can be treated with the unspecific inhibition of HDACs, despite this approach being only partially effective. More efficient strategies may be proposed for DMD only after the different HDAC members will be characterized. METHODS: To fully understand HDAC4 functions, we generated dystrophic mice carrying a skeletal muscle-specific deletion of HDAC4 (mdx;KO mice). The progression of muscular dystrophy was characterized in mdx and age-matched mdx;KO mice by means of histological, molecular, and functional analyses. Satellite cells (SCs) from these mice were differentiated in vitro, to identify HDAC4 intrinsic functions influencing the myogenic potential of dystrophic SCs. Gain-of-function experiments revealed the cytoplasmic functions of HDAC4 in mdx;KO muscles. RESULTS: Histone deacetylase 4 increased in the skeletal muscles of mdx mice (~3-fold; P < 0.05) and of DMD patients (n = 3, males, mean age 13.3 ± 1.5 years), suggesting that HDAC4 has a role in DMD. Its deletion in skeletal muscles importantly worsens the pathological features of DMD, leading to greater muscle fragility and degeneration over time. Additionally, it impairs SC survival, myogenic potential, and muscle regeneration, ultimately compromising muscle function (P < 0.05-0.001). The impaired membrane repair mechanism in muscles and SCs accounts for the mdx;KO phenotype. Indeed, the ectopic expression of Trim72, a major player in the membrane repair mechanism, prevents SC death (~20%; P < 0.01) and increases myogenic fusion (~40%; P < 0.01) in vitro; in vivo it significantly reduces myofibre damage (~10%; P < 0.005) and improves mdx;KO muscle function (P < 0.05). The mdx;KO phenotype is also fully rescued by restoring cytoplasmic levels of HDAC4, both in vitro and in vivo. The protective role of HDAC4 in the cytoplasm of mdx;KO muscles is, in part, independent of its deacetylase activity. HDAC4 expression correlates with Trim72 mRNA levels; furthermore, Trim72 mRNA decays more rapidly (P < 0.01) in mdx;KO muscle cells, compared with mdx ones. CONCLUSIONS: Histone deacetylase 4 performs crucial functions in the cytoplasm of dystrophic muscles, by mediating the muscle repair response to damage, an important role in ensuring muscle homeostasis, probably by stabilizing Trim72 mRNA. Consequently, the cytoplasmic functions of HDAC4 should be stimulated rather than inhibited in muscular dystrophy treatments, a fact to be considered in future therapeutic approaches.


Assuntos
Histona Desacetilases , Distrofia Muscular de Duchenne , Adolescente , Animais , Criança , Citoplasma/metabolismo , Citoplasma/patologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Proteínas Repressoras
5.
Pharmaceutics ; 13(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34834195

RESUMO

The anatomy and physiology of the eye strongly limit the bioavailability of locally administered drugs. The entrapment of therapeutics into nanocarriers represents an effective strategy for the topical treatment of several ocular disorders, as they may protect the embedded molecules, enabling drug residence on the ocular surface and/or its penetration into different ocular compartments. The present work shows the activity of hyaluronan-cholesterol nanogels (NHs) as ocular permeation enhancers. Thanks to their bioadhesive properties, NHs firmly interact with the superficial corneal epithelium, without penetrating the stroma, thus modifying the transcorneal penetration of loaded therapeutics. Ex vivo transcorneal permeation experiments show that the permeation of hydrophilic drugs (i.e., tobramycin and diclofenac sodium salt), loaded in NHs, is significantly enhanced when compared to the free drug solutions. On the other side, the permeation of hydrophobic drugs (i.e., dexamethasone and piroxicam) is strongly dependent on the water solubility of the entrapped molecules. The obtained results suggest that NHs formulations can improve the ocular bioavailability of the instilled drugs by increasing their preocular retention time (hydrophobic drugs) or facilitating their permeation (hydrophilic drugs), thus opening the route for the application of HA-based NHs in the treatment of both anterior and posterior eye segment diseases.

6.
Cells ; 10(7)2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-34359985

RESUMO

IL-6 is a pleiotropic cytokine that can exert different and opposite effects. The muscle-induced and transient expression of IL-6 can act in an autocrine or paracrine manner, stimulating anabolic pathways associated with muscle growth, myogenesis, and with regulation of energy metabolism. In contrast, under pathologic conditions, including muscular dystrophy, cancer associated cachexia, aging, chronic inflammatory diseases, and other pathologies, the plasma levels of IL-6 significantly increase, promoting muscle wasting. Nevertheless, the specific physio-pathological role exerted by IL-6 in the maintenance of differentiated phenotype remains to be addressed. The purpose of this study was to define the role of increased plasma levels of IL-6 on muscle homeostasis and the mechanisms contributing to muscle loss. Here, we reported that increased plasma levels of IL-6 promote alteration in muscle growth at early stage of postnatal life and induce muscle wasting by triggering a shift of the slow-twitch fibers toward a more sensitive fast fiber phenotype. These findings unveil a role for IL-6 as a potential biomarker of stunted growth and skeletal muscle wasting.


Assuntos
Envelhecimento/patologia , Interleucina-6/sangue , Desenvolvimento Muscular , Atrofia Muscular/sangue , Síndrome de Emaciação/sangue , Animais , Animais Recém-Nascidos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musculares Esqueléticas/patologia , Junção Neuromuscular/patologia
7.
Biomaterials ; 266: 120435, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049461

RESUMO

The cytokine interleukin 6 (IL6) is a key mediator of inflammation that contributes to skeletal muscle pathophysiology. IL6 activates target cells by two main mechanisms, the classical and trans-signalling pathways. While classical signalling is associated with the anti-inflammatory activities of the cytokine, the IL6 trans-signalling pathway mediates chronic inflammation and is therefore a target for therapeutic intervention. Extracellular vesicles (EVs) are natural, lipid-bound nanoparticles, with potential as targeted delivery vehicles for therapeutic macromolecules. Here, we engineered EVs to express IL6 signal transducer (IL6ST) decoy receptors to selectively inhibit the IL6 trans-signalling pathway. The potency of the IL6ST decoy receptor EVs was optimized by inclusion of a GCN4 dimerization domain and a peptide sequence derived from syntenin-1 which targets the decoy receptor to EVs. The resulting engineered EVs were able to efficiently inhibit activation of the IL6 trans-signalling pathway in reporter cells, while having no effect on the IL6 classical signalling. IL6ST decoy receptor EVs, were also capable of blocking the IL6 trans-signalling pathway in C2C12 myoblasts and myotubes, thereby inhibiting the phosphorylation of STAT3 and partially reversing the anti-differentiation effects observed when treating cells with IL6/IL6R complexes. Treatment of a Duchenne muscular dystrophy mouse model with IL6ST decoy receptor EVs resulted in a reduction in STAT3 phosphorylation in the quadriceps and gastrocnemius muscles of these mice, thereby demonstrating in vivo activity of the decoy receptor EVs as a potential therapy. Taken together, this study reveals the IL6 trans-signalling pathway as a promising therapeutic target in DMD, and demonstrates the therapeutic potential of IL6ST decoy receptor EVs.


Assuntos
Vesículas Extracelulares , Distrofia Muscular de Duchenne , Animais , Interleucina-6 , Camundongos , Fibras Musculares Esqueléticas , Transdução de Sinais
8.
Life Sci Alliance ; 3(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32753528

RESUMO

RNA-binding proteins orchestrate the composite life of RNA molecules and impact most physiological processes, thus underlying complex phenotypes. The RNA-binding protein Sam68 regulates differentiation processes by modulating splicing, polyadenylation, and stability of select transcripts. Herein, we found that Sam68 -/- mice display altered regulation of alternative splicing in the spinal cord of key target genes involved in synaptic functions. Analysis of the motor units revealed that Sam68 ablation impairs the establishment of neuromuscular junctions and causes progressive loss of motor neurons in the spinal cord. Importantly, alterations of neuromuscular junction morphology and properties in Sam68 -/- mice correlate with defects in muscle and motor unit integrity. Sam68 -/- muscles display defects in postnatal development, with manifest signs of atrophy. Furthermore, fast-twitch muscles in Sam68 -/- mice show structural features typical of slow-twitch muscles, suggesting alterations in the metabolic and functional properties of myofibers. Collectively, our data identify a key role for Sam68 in muscle development and suggest that proper establishment of motor units requires timely expression of synaptic splice variants.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Processamento Alternativo/genética , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/metabolismo , Junção Neuromuscular/fisiologia , Splicing de RNA/genética , Splicing de RNA/fisiologia , Proteínas de Ligação a RNA/genética , Sinapses/metabolismo
9.
Cells ; 9(5)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456017

RESUMO

Despite a massive body of knowledge which has been produced related to the mechanisms guiding muscle regeneration, great interest still moves the scientific community toward the study of different aspects of skeletal muscle homeostasis, plasticity, and regeneration. Indeed, the lack of effective therapies for several physiopathologic conditions suggests that a comprehensive knowledge of the different aspects of cellular behavior and molecular pathways, regulating each regenerative stage, has to be still devised. Hence, it is important to perform even more focused studies, taking the advantage of robust markers, reliable techniques, and reproducible protocols. Here, we provide an overview about the general aspects of muscle regeneration and discuss the different approaches to study the interrelated and time-dependent phases of muscle healing.


Assuntos
Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Regeneração/fisiologia , Cicatrização , Animais , Biomarcadores/metabolismo , Humanos , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia , Fatores de Tempo
10.
Oxid Med Cell Longev ; 2019: 3018584, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827671

RESUMO

The extent of oxidative stress and chronic inflammation are closely related events which coexist in a muscle environment under pathologic conditions. It has been generally accepted that the inflammatory cells, as well as myofibers, are sources of reactive species which are, in turn, able to amplify the activation of proinflammatory pathways. However, the precise mechanism underlining the physiopathologic interplay between ROS generation and inflammatory response has to be fully clarified. Thus, the identification of key molecular players in the interconnected pathogenic network between the two processes might help to design more specific therapeutic approaches for degenerative diseases. Here, we investigated whether elevated circulating levels of the proinflammatory cytokine Interleukin-6 (IL-6) are sufficient to perturb the physiologic redox balance in skeletal muscle, independently of tissue damage and inflammatory response. We observed that the overexpression of circulating IL-6 enhances the generation and accumulation of free radicals in the diaphragm muscle of adult NSE/IL-6 mice, by deregulating redox-associated molecular circuits and impinging the nuclear factor erythroid 2-related factor 2- (Nrf2-) mediated antioxidant response. Our findings are coherent with a model in which uncontrolled levels of IL-6 in the bloodstream can influence the local redox homeostasis, inducing the establishment of prooxidative conditions in skeletal muscle tissue.


Assuntos
Interleucina-6/sangue , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/patologia , NADPH Oxidase 2/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Superóxido Dismutase-1/metabolismo
11.
Curr Genomics ; 20(1): 24-37, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31015789

RESUMO

The peculiar ability of skeletal muscle tissue to operate adaptive changes during post-natal de-velopment and adulthood has been associated with the existence of adult somatic stem cells. Satellite cells, occupying an exclusive niche within the adult muscle tissue, are considered bona fide stem cells with both stem-like properties and myogenic activities. Indeed, satellite cells retain the capability to both maintain the quiescence in uninjured muscles and to be promptly activated in response to growth or re-generative signals, re-engaging the cell cycle. Activated cells can undergo myogenic differentiation or self-renewal moving back to the quiescent state. Satellite cells behavior and their fate decision are finely controlled by mechanisms involving both cell-autonomous and external stimuli. Alterations in these regu-latory networks profoundly affect muscle homeostasis and the dynamic response to tissue damage, con-tributing to the decline of skeletal muscle that occurs under physio-pathologic conditions. Although the clear myogenic activity of satellite cells has been described and their pivotal role in muscle growth and regeneration has been reported, a comprehensive picture of inter-related mechanisms guiding muscle stem cell activity has still to be defined. Here, we reviewed the main regulatory networks determining satellite cell behavior. In particular, we focused on genetic and epigenetic mechanisms underlining satel-lite cell maintenance and commitment. Besides intrinsic regulations, we reported current evidences about the influence of environmental stimuli, derived from other cell populations within muscle tissue, on satel-lite cell biology.

12.
Cells ; 8(3)2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862132

RESUMO

Muscle regeneration, characterized by the activation and proliferation of satellite cells and other precursors, is accompanied by an inflammatory response and the remodeling of the extracellular matrix (ECM), necessary to remove cellular debris and to mechanically support newly generated myofibers and activated satellite cells. Muscle repair can be considered concluded when the tissue architecture, vascularization, and innervation have been restored. Alterations in these connected mechanisms can impair muscle regeneration, leading to the replacement of functional muscle tissue with a fibrotic scar. In the present review, we will discuss the cellular mediators of fibrosis and how the altered expression and secretion of soluble mediators, such as IL-6 and IGF-1, can modulate regulatory networks involved in the altered regeneration and fibrosis during aging and diseases.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Transdução de Sinais , Animais , Fibrose , Humanos , Regeneração
13.
Cytokine Growth Factor Rev ; 41: 1-9, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29778303

RESUMO

Skeletal muscle is a complex, dynamic tissue characterized by an elevated plasticity. Although the adult muscle is mainly composed of multinucleated fibers with post mitotic nuclei, it retains a remarkable ability to regenerate in response to traumatic events. The regenerative potential of the adult skeletal muscle relies in the activity of satellite cells, mononucleated cells residing within the muscle in intimate association with myofibers. Satellite cells normally remain quiescent in their sublaminar position, sporadically entering the cell cycle to guarantee an efficient cellular turnover, by fusing with pre-existing myofibers, and to maintain the stem cell pool. However, after muscle injury satellite cells undergo an extensive increase of their activity in response to environmental stimuli, thereby participating to the regeneration of a functional muscle tissue. Nevertheless, regeneration is affected in several pathologic conditions and by a wide range of environmental signals that are highly variable, not only through time, but also depending on the physiological or pathological conditions of the musculature. Among these factors, the interleukin-6 (IL-6) plays a critical physiopathologic role on muscle homeostasis and diseases. The basis of muscle regeneration and the impact of IL-6 on the physiopathology of skeletal muscle will be discussed.


Assuntos
Homeostase/fisiologia , Interleucina-6/metabolismo , Músculo Esquelético/fisiologia , Doenças Musculares/patologia , Regeneração/fisiologia , Células-Tronco/fisiologia , Animais , Humanos , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Células-Tronco/metabolismo
14.
Oxid Med Cell Longev ; 2017: 1987218, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28845212

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked genetic disease in which dystrophin gene is mutated, resulting in dysfunctional or absent dystrophin protein. The pathology of dystrophic muscle includes degeneration, necrosis with inflammatory cell invasion, regeneration, and fibrous and fatty changes. Nevertheless, the mechanisms by which the absence of dystrophin leads to muscle degeneration remain to be fully elucidated. An imbalance between oxidant and antioxidant systems has been proposed as a secondary effect of DMD. However, the significance and precise extent of the perturbation in redox signaling cascades is poorly understood. We report that mdx dystrophic mice are able to activate a compensatory antioxidant response at the presymptomatic stage of the disease. In contrast, increased circulating levels of IL-6 perturb the redox signaling cascade, even prior to the necrotic stage, leading to severe features and progressive nature of muscular dystrophy.


Assuntos
Interleucina-6/sangue , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/sangue , Transdução de Sinais , Animais , Diafragma/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Necrose , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
15.
Hum Mol Genet ; 26(14): 2781-2790, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28472288

RESUMO

Oxidative stress is involved in the pathogenesis of Duchenne muscular dystrophy (DMD), an X-linked genetic disorder caused by mutations in the dystrophin gene and characterized by progressive, lethal muscle degeneration and chronic inflammation. In this study, we explored the expression and signaling pathway of a master player of the anti-oxidant and anti-inflammatory response, namely NF-E2-related Factor 2, in muscle biopsies of DMD patients. We classified DMD patients in two age groups (Class I, 0-2 years and Class II, 2-9 years), in order to evaluate the antioxidant pathway expression during the disease progression. We observed that altered enzymatic antioxidant responses, increased levels of oxidized glutathione and oxidative damage are differently modulated in the two age classes of patients and well correlate with the severity of pathology. Interestingly, we also observed a modulation of relevant markers of the inflammatory response, such as heme oxygenase 1 and Inteleukin-6 (IL-6), suggesting a link between oxidative stress and chronic inflammatory response. Of note, using a transgenic mouse model, we demonstrated that IL-6 overexpression parallels the antioxidant expression profile and the severity of dystrophic muscle observed in DMD patients. This study advances our understanding of the pathogenic mechanisms underlying DMD and defines the critical role of oxidative stress on muscle wasting with clear implications for disease pathogenesis and therapy in human.


Assuntos
Distrofia Muscular de Duchenne/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Criança , Pré-Escolar , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Feminino , Glutationa/genética , Glutationa/metabolismo , Humanos , Lactente , Recém-Nascido , Inflamação/genética , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Transdução de Sinais
16.
Hum Mol Genet ; 24(21): 6041-53, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26251044

RESUMO

Duchenne muscular dystrophy (DMD) is characterized by progressive lethal muscle degeneration and chronic inflammatory response. The mdx mouse strain has served as the animal model for human DMD. However, while DMD patients undergo extensive necrosis, the affected muscles of adult mdx mice rapidly regenerates and regains structural and functional integrity. The basis for the mild effects observed in mice compared with the lethal consequences in humans remains unknown. In this study, we provide evidence that interleukin-6 (IL-6) is causally linked to the pathogenesis of muscular dystrophy. We report that forced expression of IL-6, in the adult mdx mice, recapitulates the severe phenotypic characteristics of DMD in humans. Increased levels of IL-6 exacerbate the dystrophic muscle phenotype, sustaining inflammatory response and repeated cycles of muscle degeneration and regeneration, leading to exhaustion of satellite cells. The mdx/IL6 mouse closely approximates the human disease and more faithfully recapitulates the disease progression in humans. This study promises to significantly advance our understanding of the pathogenic mechanisms that lead to DMD.


Assuntos
Interleucina-6/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Animais , Regulação para Baixo , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos mdx , Desenvolvimento Muscular , Músculo Esquelético/patologia , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Células Satélites de Músculo Esquelético/patologia , Células-Tronco/patologia , Quinase Induzida por NF-kappaB
17.
Front Aging Neurosci ; 7: 69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999854

RESUMO

Duchenne muscular dystrophy (DMD) is a X-linked genetic disease in which the absence of dystrophin leads to progressive lethal skeletal muscle degeneration. It has been demonstrated that among genes which are important for proper muscle development and function, micro-RNAs (miRNAs) play a crucial role. Moreover, altered levels of miRNAs were found in several muscular disorders, including DMD. A specific group of miRNAs, whose expression depends on dystrophin levels and whose deregulation explains several DMD pathogenetic traits, has been identified. Here, we addressed whether the anabolic activity of mIGF-1 on dystrophic muscle is associated with modulation of microRNAs expression. We demonstrated that some microRNAs are strictly linked to the dystrophin expression and are not modulated by mIGF-1 expression. In contrast, local expression of mIGF-1 promotes the modulation of other microRNAs, such as miR-206 and miR-24, along with the modulation of muscle specific genes, which are associated with maturation of regenerating fibers and with the stabilization of the differentiated muscle phenotype. These data suggest that mIGF-1, modifying the expression of some of the active players of muscle homeostasis, is able, even in absence of dystrophin expression, to activate circuitries that confer robustness to dystrophic muscle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...