Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 37(7): e23025, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37309599

RESUMO

We previously reported that cyclin D3-null mice display a shift toward the slow, oxidative phenotype in skeletal muscle, improved exercise endurance, and increased energy expenditure. Here, we explored the role of cyclin D3 in the physiologic response of skeletal muscle to external stimuli and in a model of muscle degenerative disease. We show that cyclin D3-null mice exhibit a further transition from glycolytic to oxidative muscle fiber type in response to voluntary exercise and an improved response to fasting. Since fast glycolytic fibers are known to be more susceptible to degeneration in Duchenne muscular dystrophy (DMD), we examined the effects of cyclin D3 inactivation on skeletal muscle phenotype in the mdx mouse model of DMD. Compared with control mdx mice, cyclin D3-deficient mdx mice display a higher proportion of slower and more oxidative myofibers, reduced muscle degenerative/regenerative processes, and reduced myofiber size variability, indicating an attenuation of dystrophic histopathology. Furthermore, mdx muscles lacking cyclin D3 exhibit reduced fatigability during repeated electrical stimulations. Notably, cyclin D3-null mdx mice show enhanced performance during recurrent trials of endurance treadmill exercise, and post-exercise muscle damage results decreased while the regenerative capacity is boosted. In addition, muscles from exercised cyclin D3-deficient mdx mice display increased oxidative capacity and increased mRNA expression of genes involved in the regulation of oxidative metabolism and the response to oxidative stress. Altogether, our findings indicate that depletion of cyclin D3 confers benefits to dystrophic muscle, suggesting that cyclin D3 inhibition may represent a promising therapeutic strategy against DMD.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Camundongos Endogâmicos mdx , Ciclina D3 , Músculo Esquelético , Metabolismo Energético , Modelos Animais de Doenças , Camundongos Knockout
2.
Sensors (Basel) ; 22(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36146227

RESUMO

Tissue engineering is a multidisciplinary approach focused on the development of innovative bioartificial substitutes for damaged organs and tissues. For skeletal muscle, the measurement of contractile capability represents a crucial aspect for tissue replacement, drug screening and personalized medicine. To date, the measurement of engineered muscle tissues is rather invasive and not continuous. In this context, we proposed an innovative sensor for the continuous monitoring of engineered-muscle-tissue contractility through an embedded technique. The sensor is based on the calibrated deflection of one of the engineered tissue's supporting pins, whose movements are measured using a noninvasive optical method. The sensor was calibrated to return force values through the use of a step linear motor and a micro-force transducer. Experimental results showed that the embedded sensor did not alter the correct maturation of the engineered muscle tissue. Finally, as proof of concept, we demonstrated the ability of the sensor to capture alterations in the force contractility of the engineered muscle tissues subjected to serum deprivation.


Assuntos
Contração Muscular , Engenharia Tecidual , Músculo Esquelético/fisiologia
3.
Cell Mol Bioeng ; 15(3): 255-265, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35611165

RESUMO

Introduction: The neuromuscular junction (NMJ) is a chemical synapse responsible for converting electrical pulses generated by the motor neuron into electrical activity in muscle fibers, and is severely impaired in various diseases, such as Amyotrophic Lateral Sclerosis (ALS). Here, we proposed a novel technique to measure, for the first time, NMJ functionality in isotonic conditions, which better reflect muscle physiological activity. Methods: We employed the in-situ testing technique, studied a proper placing of two pairs of wire electrodes for nerve and muscle stimulation, developed an extensive testing protocol, and proposed a novel parameter, the Isotonic Neurotransmission Failure (INF), to properly capture the impairments in neurotransmission during isotonic fatigue. We employed wild-type mice to assess the feasibility of the proposed technique, and the ALS model SOD1G93A mice to demonstrate the validity of the INF. Results: Results confirmed the measurement accuracy in term of average value and coefficient of variation of the parameters measured through nerve stimulation in comparison with the corresponding values obtained for membrane stimulation. The INF values computed for the SOD1G93A tibialis anterior muscles pointed out an impairment of ALS mice during the isotonic fatigue test, whereas, as expected, their resistance to fatigue was higher. Conclusions: In this work we devised a novel technique and a new parameter for a deep assessment of NMJ functionality in isotonic conditions, including fatigue, which is the most crucial condition for the neuronal signal transmission. This technique may be applied to other animal models, to unravel the mechanisms behind muscle-nerve impairments in other neurodegenerative pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA