Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(1): e0115701, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25606852

RESUMO

The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e., not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with Gαq coupling-defective variants of α1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between α1A-AR and ß2-AR that leads to potentiation of a Gαq-independent signaling cascade in response to α1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as ß-AR-selective agonist, was examined with respect to activation of α1A-AR. α1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at α1A-AR. Iso induced signaling at α1A-AR was further interrogated by probing steps along the Gαq /PLC, Gαs and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with α1A-AR, and CHO_α1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by α1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical Gαq- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of α1A-AR partial agonist with signaling bias toward MAPK/ERK signaling cascade that is likely independent of coupling to Gαq.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Isoproterenol/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Células CHO , Sinalização do Cálcio/genética , Cricetulus , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores Adrenérgicos alfa 1/genética
2.
Handb Exp Pharmacol ; (202): 485-526, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21290240

RESUMO

The pharmacological concept of specifically targeting purinoceptors (receptors for ATP and related nucleotides) has emerged over the last two decades in the quest for novel, differentiated therapeutics. Investigations from many laboratories have established a prominent role for ATP in the functional regulation of most tissue and organ systems, including the urinary tract, under normal and pathophysiological conditions. In the particular case of the urinary tract, ATP signaling via P2X1 receptors participates in the efferent control of detrusor smooth muscle excitability, and this function may be heightened in disease and aging. Perhaps of greater interest, ATP also appears to be involved in bladder sensation, operating via activation of P2X3-containing receptors on sensory afferent neurones, both on peripheral terminals within the urinary tract tissues (e.g., ureters, bladder) and on central synapses in the dorsal horn of the spinal cord. Such findings are based on results from classical pharmacological and localization studies in nonhuman and human tissues, gene knockout mice, and studies using recently identified pharmacological antagonists - some of which have progressed as candidate drug molecules. Based on recent advances in this field, it is apparent that the development of selective antagonists for these receptors will occur that could lead to therapies offering better relief of storage, voiding, and sensory symptoms for patients, while minimizing the systemic side effects that curb the clinical effectiveness of current urologic medicines.


Assuntos
Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2/metabolismo , Sistema Urinário/metabolismo , Doenças Urológicas/metabolismo , Animais , Humanos , Vias Neurais/metabolismo , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X/efeitos dos fármacos , Transdução de Sinais , Sistema Urinário/efeitos dos fármacos , Sistema Urinário/inervação , Sistema Urinário/fisiopatologia , Doenças Urológicas/tratamento farmacológico , Doenças Urológicas/fisiopatologia
3.
Brain ; 133(9): 2549-64, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20802203

RESUMO

Pain remains an area of considerable unmet clinical need, and this is particularly true of pain associated with bone metastases, in part because existing analgesic drugs show only limited efficacy in many patients and in part because of the adverse side effects associated with these agents. An important issue is that the nature and roles of the algogens produced in bone that drive pain-signalling systems remain unknown. Here, we tested the hypothesis that adenosine triphosphate is one such key mediator through actions on P2X3 and P2X2/3 receptors, which are expressed selectively on primary afferent nocioceptors, including those innervating the bone. Using a well-established rat model of bone cancer pain, AF-353, a recently described potent and selective P2X3 and P2X2/3 receptor antagonist, was administered orally to rats and found to produce highly significant prevention and reversal of bone cancer pain behaviour. This attenuation occurred without apparent modification of the disease, since bone destruction induced by rat MRMT-1 carcinoma cells was not significantly altered by AF-353. Using in vivo electrophysiology, evidence for a central site of action was provided by dose-dependent reductions in electrical, mechanical and thermal stimuli-evoked dorsal horn neuronal hyperexcitability following direct AF-353 administration onto the spinal cord of bone cancer animals. A peripheral site of action was also suggested by studies on the extracellular release of adenosine triphosphate from MRMT-1 carcinoma cells. Moreover, elevated phosphorylated-extracellular signal-regulated kinase expression in dorsal root ganglion neurons, induced by co-cultured MRMT-1 carcinoma cells, was significantly reduced in the presence of AF-353. These data suggest that blockade of P2X3 and P2X2/3 receptors on both the peripheral and central terminals of nocioceptors contributes to analgesic efficacy in a model of bone cancer pain. Thus, systemic P2X3 and P2X2/3 receptor antagonists with central nervous system penetration may offer a promising therapeutic tool in treating bone cancer pain.


Assuntos
Dor/tratamento farmacológico , Dor/psicologia , Antagonistas do Receptor Purinérgico P2 , Pirimidinas/uso terapêutico , Trifosfato de Adenosina/metabolismo , Administração Oral , Amidinas , Animais , Neoplasias Ósseas/complicações , Neoplasias Ósseas/patologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Carcinoma/complicações , Carcinoma/patologia , Células Cultivadas , Técnicas de Cocultura/métodos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gânglios Espinais/citologia , Hiperalgesia/tratamento farmacológico , Dor/diagnóstico por imagem , Dor/etiologia , Medição da Dor , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3 , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Microtomografia por Raio-X/métodos
4.
Br J Pharmacol ; 160(6): 1387-98, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20590629

RESUMO

BACKGROUND AND PURPOSE: Purinoceptors containing the P2X3 subunit (P2X3 homotrimeric and P2X2/3 heterotrimeric) are members of the P2X family of ion channels gated by ATP and may participate in primary afferent sensitization in a variety of pain-related diseases. The current work describes the in vitro pharmacological characteristics of AF-353, a novel, orally bioavailable, highly potent and selective P2X3/P2X2/3 receptor antagonist. EXPERIMENTAL APPROACH: The antagonistic potencies (pIC(50)) of AF-353 for rat and human P2X3 and human P2X2/3 receptors were determined using methods of radioligand binding, intracellular calcium flux and whole cell voltage-clamp electrophysiology. KEY RESULTS: The pIC(50) estimates for these receptors ranged from 7.3 to 8.5, while concentrations 300-fold higher had little or no effect on other P2X channels or on an assortment of receptors, enzymes and transporter proteins. In contrast to A-317491 and TNP-ATP, competition binding and intracellular calcium flux experiments suggested that AF-353 inhibits activation by ATP in a non-competitive fashion. Favourable pharmacokinetic parameters were observed in rat, with good oral bioavailability (%F = 32.9), reasonable half-life (t(1/2) = 1.63 h) and plasma-free fraction (98.2% protein bound). CONCLUSIONS AND IMPLICATIONS: The combination of a favourable pharmacokinetic profile with the antagonist potency and selectivity for P2X3 and P2X2/3 receptors suggests that AF-353 is an excellent in vivo tool compound for study of these channels in animal models and demonstrates the feasibility of identifying and optimizing molecules into potential clinical candidates, and, ultimately, into a novel class of therapeutics for the treatment of pain-related disorders.


Assuntos
Trifosfato de Adenosina/metabolismo , Éteres Fenílicos/farmacologia , Antagonistas do Receptor Purinérgico P2 , Pirimidinas/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Células CHO , Cálcio/metabolismo , Cricetinae , Cricetulus , Meia-Vida , Humanos , Concentração Inibidora 50 , Masculino , Técnicas de Patch-Clamp , Éteres Fenílicos/administração & dosagem , Éteres Fenílicos/farmacocinética , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Ratos , Ratos Wistar , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3
5.
J Neurosci ; 30(12): 4503-7, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20335487

RESUMO

P2X(3) and P2X(2/3) receptors are localized on sensory afferents both peripherally and centrally and have been implicated in various sensory functions. However, the physiological role of these receptors expressed presynaptically in the spinal cord in regulating sensory transmission remains to be elucidated. Here, a novel selective P2X(3) and P2X(2/3) antagonist, AF-792 [5-(5-ethynyl-2-isopropyl-4-methoxy-phenoxy)-pyrimidine-2,4-diamine, previously known as RO-5], in addition to less selective purinoceptor ligands, was applied intrathecally in vivo. Cystometry recordings were made to assess changes in the micturition reflex contractions after drug treatments. We found that AF-792 inhibited micturition reflex activity significantly (300 nmol; from baseline contraction intervals of 1.18 +/- 0.07 to 9.33 +/- 2.50 min). Furthermore, inhibition of P2X(3) and P2X(2/3) receptors in the spinal cord significantly attenuated spinal activation of extracellular-signal regulated kinases induced by acute peripheral stimulation of the bladder with 1% acetic acid by 46.4 +/- 12.0% on average. Hence, the data suggest that afferent signals originating from the bladder are regulated by spinal P2X(3) and P2X(2/3) receptors and establish directly an endogenous central presynaptic purinergic mechanism to regulate visceral sensory transmission. Identification of this spinal purinergic control in visceral activities may help the development of P2X(3) and P2X(2/3) antagonist to treat urological dysfunction, such as overactive bladder, and possibly other debilitating sensory disorders, including chronic pain states.


Assuntos
Receptores Purinérgicos P2/metabolismo , Medula Espinal/metabolismo , Bexiga Urinária/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Feminino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Pressão , Antagonistas do Receptor Purinérgico P2 , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Medula Espinal/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos
6.
Bioorg Med Chem Lett ; 20(3): 1031-6, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20045645

RESUMO

Despite the extensive literature describing the role of the ATP-gated P2X(3) receptors in a variety of physiological processes the potential of antagonists as therapeutic agents has been limited by the lack of drug-like selective molecules. In this paper we report the discovery and optimization of RO-85, a novel drug-like, potent and selective P2X(3) antagonist. High-throughput screening of the Roche compound collection identified a small hit series of heterocyclic amides from a large parallel synthesis library. Rapid optimization, facilitated by high-throughput synthesis, focusing on increasing potency and improving drug-likeness resulted in the discovery of RO-85.


Assuntos
Descoberta de Drogas/métodos , Antagonistas do Receptor Purinérgico P2 , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Tiofenos/química , Tiofenos/metabolismo , Tiofenos/farmacologia , Animais , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ligação Proteica/fisiologia , Ratos , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X3 , Relação Estrutura-Atividade
7.
Am J Physiol Regul Integr Comp Physiol ; 298(3): R534-47, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20032263

RESUMO

NGF has been suggested to play a role in urinary bladder dysfunction by mediating inflammation, as well as morphological and functional changes, in sensory and sympathetic neurons innervating the urinary bladder. To further explore the role of NGF in bladder sensory function, we generated a transgenic mouse model of chronic NGF overexpression in the bladder using the urothelium-specific uroplakin II (UPII) promoter. NGF mRNA and protein were expressed at higher levels in the bladders of NGF-overexpressing (NGF-OE) transgenic mice compared with wild-type littermate controls from postnatal day 7 through 12-16 wk of age. Overexpression of NGF led to urinary bladder enlargement characterized by marked nerve fiber hyperplasia in the submucosa and detrusor smooth muscle and elevated numbers of tissue mast cells. There was a marked increase in the density of CGRP- and substance P-positive C-fiber sensory afferents, neurofilament 200-positive myelinated sensory afferents, and tyrosine hydroxylase-positive sympathetic nerve fibers in the suburothelial nerve plexus. CGRP-positive ganglia were also present in the urinary bladders of transgenic mice. Transgenic mice had reduced urinary bladder capacity and an increase in the number and amplitude of nonvoiding bladder contractions under baseline conditions in conscious open-voiding cystometry. These changes in urinary bladder function were further associated with an increased referred somatic pelvic hypersensitivity. Thus, chronic urothelial NGF overexpression in transgenic mice leads to neuronal proliferation, focal increases in urinary bladder mast cells, increased urinary bladder reflex activity, and pelvic hypersensitivity. NGF-overexpressing mice may, therefore, provide a useful transgenic model for exploring the role of NGF in urinary bladder dysfunction.


Assuntos
Fator de Crescimento Neural/genética , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária/fisiologia , Urotélio/fisiologia , Animais , Peso Corporal , Cistite/patologia , Cistite/fisiopatologia , Expressão Gênica/fisiologia , Mastócitos/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso/inervação , Músculo Liso/patologia , Músculo Liso/fisiologia , Fator de Crescimento Neural/metabolismo , Tamanho do Órgão , RNA Mensageiro/metabolismo , Reflexo Abdominal/fisiologia , Células Receptoras Sensoriais/patologia , Células Receptoras Sensoriais/fisiologia , Sistema Nervoso Simpático/patologia , Sistema Nervoso Simpático/fisiopatologia , Bexiga Urinária/inervação , Bexiga Urinária/patologia , Bexiga Urinária Hiperativa/patologia , Micção/fisiologia , Uroplaquina II , Urotélio/inervação , Urotélio/patologia
8.
J Urol ; 182(2): 776-85, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19539322

RESUMO

PURPOSE: We investigated the pharmacological effect of TRPV1 antagonists in anesthetized rodent models of bladder function. MATERIALS AND METHODS: The TRPV1 antagonists JNJ17203212 and JYL1421 were evaluated in the anesthetized rat volume induced micturition reflex model. JNJ17203212 was further evaluated in this model in capsaicin (Sigma) desensitized rats, and in rat capsaicin and mouse citric acid models of irritant induced detrusor overactivity. RESULTS: Systemic JNJ17203212 and JYL1421 administration in the anesthetized rat volume induced micturition reflex model resulted in an increased micturition threshold volume. JNJ17203212 also decreased bladder contraction amplitude but JYL1421 had no effect. Capsaicin desensitization significantly increased baseline micturition threshold volume and decreased bladder contraction amplitude in the volume induced micturition reflex model compared to those in sham treated controls and JNJ17203212 produced no further effect after capsaicin desensitization. JNJ17203212 was also effective in 2 models of irritant induced detrusor overactivity, preventing the decrease in micturition threshold volume and the increase in bladder contraction amplitude observed with intravesical instillation of 10 microM capsaicin, and the decreased voiding interval induced by intravesical citric acid. CONCLUSIONS: The TRPV1 antagonists JNJ17203212 and JYL1421 increased the threshold for activation of the micturition reflex in the anesthetized rat volume induced micturition reflex model. This effect appeared to be mediated by capsaicin sensitive afferents. JNJ17203212 also inhibited detrusor overactivity induced by intravesical capsaicin and intravesical citric acid. These data extend our understanding of the role of TRPV1 in sensory modulation of the micturition reflex under nonirritant and inflammatory conditions.


Assuntos
Aminopiridinas/farmacologia , Piperazinas/farmacologia , Reflexo/efeitos dos fármacos , Sulfonamidas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Tioureia/análogos & derivados , Bexiga Urinária/fisiologia , Animais , Capsaicina/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Tioureia/farmacologia
9.
Bioorg Med Chem Lett ; 19(6): 1632-5, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19231178

RESUMO

The purinoceptor subtypes P2X(3) and P2X(2/3) have been shown to play a pivotal role in models of various pain conditions. Identification of a potent and selective dual P2X(3)/P2X(2/3) diaminopyrimidine antagonist RO-4 prompted subsequent optimization of the template. This paper describes the SAR and optimization of the diaminopyrimidine ring and particularly the substitution of the 2-amino group. The discovery of the highly potent and drug-like dual P2X(3)/P2X(2/3) antagonist RO-51 is presented.


Assuntos
Analgésicos/síntese química , Analgésicos/farmacologia , Química Farmacêutica/métodos , Dor/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2 , Pirimidinas/síntese química , Pirimidinas/farmacologia , Trifosfato de Adenosina/química , Animais , Células CHO , Cricetinae , Cricetulus , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Modelos Químicos , Receptores Purinérgicos P2/química , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 19(6): 1628-31, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19231180

RESUMO

P2X purinoceptors are ligand-gated ion channels whose endogenous ligand is ATP. Both the P2X(3) and P2X(2/3) receptor subtypes have been shown to play an important role in the regulation of sensory function and dual P2X(3)/P2X(2/3) antagonists offer significant potential for the treatment of pain. A high-throughput screen of the Roche compound collection resulted in the identification of a novel series of diaminopyrimidines; subsequent optimization resulted in the discovery of RO-4, a potent, selective and drug-like dual P2X(3)/P2X(2/3) antagonist.


Assuntos
Analgésicos/síntese química , Analgésicos/farmacologia , Química Farmacêutica/métodos , Dor/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2 , Pirimidinas/síntese química , Pirimidinas/farmacologia , Trifosfato de Adenosina/química , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Íons , Ligantes , Modelos Químicos , Receptores Purinérgicos P2/química , Relação Estrutura-Atividade
11.
Mol Pharmacol ; 75(3): 713-28, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19109357

RESUMO

Agonist occupied alpha(1)-adrenoceptors (alpha(1)-ARs) engage several signaling pathways, including phosphatidylinositol hydrolysis, calcium mobilization, arachidonic acid release, mitogen-activated protein (MAP) kinase activation, and cAMP accumulation. The natural agonist norepinephrine (NE) activates with variable affinity and intrinsic efficacy all adrenoceptors, and in cells that coexpress alpha(1)- and beta-AR subtypes, such as cardiomyocytes, this leads to coactivation of multiple downstream pathways. This may result in pathway cross-talk with significant consequences to heart physiology and pathologic state. To dissect signaling components involved specifically in alpha(1A)- and beta(2)-AR signal interplay, we have developed a recombinant model system that mimics the levels of receptor expression observed in native cells. We followed intracellular Ca(2+) mobilization to monitor in real time the activation of both G(q) and G(s) pathways. We found that coactivation of alpha(1A)- and beta(2)-AR by the nonselective agonist NE or via a combination of the highly selective alpha(1A)-AR agonist A61603 and the beta-selective agonist isoproterenol led to increases in Ca(2+) influx from the extracellular compartment relative to stimulation with A61603 alone, with no effect on the associated transient release of Ca(2+) from intracellular stores. This effect became more evident upon examination of an alpha(1A)-AR variant exhibiting a partial defect in coupling to G(q), and we attribute it to potentiation of a non G(q)-pathway, uncovered by application of a combination of xestospongin C, an endoplasmic reticulum inositol 1,4,5-triphosphate receptor blocker, and 2-aminoethoxydiphenyl borate, a nonselective storeoperated Ca(2+) entry channel blocker. We also found that stimulation with A61603 of a second alpha(1A)-AR variant entirely unable to signal induced no Ca(2+) unless beta(2)-AR was concomitantly activated. These results may be accounted for by the presence of alpha(1A)/beta(2)-AR heterodimers or alternatively by specific adrenoceptor signal cross-talk resulting in distinct pharmacological behavior. Finally, our findings provide a new conceptual framework to rationalize outcomes from clinical studies targeting alpha- and beta-adrenoceptors.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Membranas Intracelulares/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Linhagem Celular , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Membranas Intracelulares/patologia , Dados de Sequência Molecular
12.
Neurosci Lett ; 450(1): 12-7, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19027050

RESUMO

In micturition control, the roles of ionotropic glutamate (iGlu) receptors NMDA and AMPA are well established, whereas little is known about the function of metabotropic glutamate (mGlu) receptors. Since antagonists for mGlu5 receptors are efficacious in animal models of inflammatory and neuropathic pain, we examined whether mGlu5 receptors play a role in the voiding reflex and bladder nociception and, if so, via centrally or peripherally localized receptors. The mGlu5 receptor antagonist MPEP dose-dependently increased the micturition threshold (MT) volume in the volume-induced micturition reflex (VIMR) model in anesthetized rats. Following doses of 5.2, 15.5 and 51.7micromol/kg of MPEP (intraduodenal), the MT was increased by 24.7+/-5.0%, 97.2+/-12.5% (P<0.01) and 128.0+/-28.3% (P<0.01) from the baseline, respectively (n=4-5; compared with 0.8+/-9.1% in the vehicle group). Infusing MPEP (0.3, 1mM) directly into the bladder also raised MT. However, the efficacious plasma concentrations of MPEP following intravesical dosing were similar to that after intraduodenal dosing (EC(50) of 0.11 and 0.27microM, respectively, P>0.05). MPEP also dose-dependently attenuated the visceromotor responses (VMR, total number of abdominal EMG spikes during phasic bladder distension) in anesthetized rats. The VMR was decreased to 1332.4+/-353.9 from control of 2886.5+/-692.2 spikes/distension (n=6, P<0.01) following MPEP (10micromol/kg, iv). Utilizing the isolated mouse bladder/pelvic nerve preparation, we found that neither MPEP (up to 3microM) nor MTEP (up to 10microM) affected afferent discharge in response to bladder distension (n=4-6). In contrast, MPEP attenuated the responses of the mesenteric nerves to distension of the mouse jejunum in vitro. These data suggest that mGlu5 receptors play facilitatory roles in the processing of afferent input from the urinary bladder, and that central rather than peripheral mGlu5 receptors appear to be responsible.


Assuntos
Dor/fisiopatologia , Receptores de Glutamato Metabotrópico/metabolismo , Bexiga Urinária/fisiologia , Micção/fisiologia , Potenciais de Ação , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Jejuno/inervação , Jejuno/fisiologia , Camundongos , Modelos Biológicos , Piridinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Reflexo , Reflexo de Estiramento/efeitos dos fármacos , Tiazóis/administração & dosagem , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/inervação , Micção/efeitos dos fármacos
13.
Am J Physiol Renal Physiol ; 294(4): F821-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18216148

RESUMO

The control and regulation of the lower urinary tract are partly mediated by purinergic signaling. This study investigated the distribution and function of P2Y receptors in the rat urinary bladder. Application of P2Y agonists to rat urothelial cells evoked increases in intracellular calcium; the rank order of agonist potency (pEC(50) +/- SE) was ATP (5.10 +/- 0.07) > UTP (4.91 +/- 0.14) > UTPgammaS (4.61 +/- 0.16) = ATPgammaS (4.70 +/- 0.05) > 2-methylthio adenosine 5'-diphosphate = 5'-(N-ethylcarboxamido)adenosine = ADP (<3.5). The rank order potency for these agonists indicates that urothelial cells functionally express P2Y(2)/P2Y(4) receptors, with a relative lack of contribution from other P2Y or adenosine receptors. Real-time PCR, Western blotting, and immunocytochemistry confirmed the expression of P2Y(2) and to a lesser extent P2Y(4) in the urothelium. Immunocytochemical studies revealed expression of P2Y(2) staining in all layers of the urothelium, with relative absence of P2Y(4). P2Y(2) staining was also present in suburothelial nerve bundles and underlying detrusor smooth muscle. Addition of UTP and UTPgammaS was found to evoke ATP release from cultured rat urothelial cells. These findings indicate that cultured rat urothelial cells functionally express P2Y(2)/P2Y(4) receptors. Activation of these receptors could have a role in autocrine and paracrine signaling throughout the urothelium. This could lead to the release of bioactive mediators such as additional ATP, nitric oxide, and acetylcholine, which can modulate the micturition reflex by acting on suburothelial myofibroblasts and/or pelvic afferent fibers.


Assuntos
Receptores Purinérgicos P2/genética , Bexiga Urinária/fisiologia , Urotélio/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/fisiologia , Células Cultivadas , Primers do DNA , Regulação da Expressão Gênica , Imuno-Histoquímica , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y2 , Bexiga Urinária/citologia , Bexiga Urinária/efeitos dos fármacos , Urotélio/citologia , Urotélio/efeitos dos fármacos
14.
J Urol ; 178(6): 2683-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17945281

RESUMO

PURPOSE: We investigated the role of prostacyclin on afferent modulation of the micturition reflex using the novel selective prostacyclin receptor antagonist RO3244019 in rat models of bladder function. MATERIALS AND METHODS: The effects of RO3244019 on urodynamic parameters were evaluated in 3 rat models. In the anesthetized isovolumetric bladder contraction and the volume induced micturition reflex (Refill) models the effects of RO3244019 and chronic capsaicin desensitization were compared. In the citric acid induced detrusor overactivity model the effects of RO3244019 and the cyclooxygenase inhibitor indomethacin were evaluated. RESULTS: In the isovolumetric bladder contraction model RO3244019 dose dependently decreased bladder contraction frequency with a mean +/- SEM maximum decrease of 72.2% +/- 4.3% at 3.16 mg/kg. RO3244019 also dose dependently increased the micturition threshold in the Refill model with a maximum increase of 86.9% +/- 19.1% at 3.0 mg/kg. In animals that were chronically treated with capsaicin bladder contraction frequency was decreased by 88.9% in the isovolumetric bladder contraction model and micturition threshold was increased by 68.1% in the Refill model relative to sham treated rats. RO3244019 (3.0 mg/kg) further increased the micturition threshold in capsaicin treated animals by 53.7% +/- 18.1% from baseline. In the citric acid induced detrusor overactivity model citric acid decreased the voiding interval to 28.5% of baseline. This effect was reversed by RO3244019 (73.0% +/- 6.4%) and indomethacin (97.7% +/- 5.5%) at 3.0 mg/kg compared to vehicle (55.0% +/- 4.1%). CONCLUSIONS: The prostacyclin receptor antagonist RO3244019 decreased bladder contraction frequency and increased micturition threshold in the anesthetized isovolumetric bladder contraction and Refill models, respectively, and increased the micturition voiding interval in the conscious citric acid induced detrusor overactivity model. Additionally, RO3244019 remained effective for increasing the micturition threshold in the Refill model even following chronic capsaicin desensitization. Taken together these data suggest that prostacyclin may have a facilitory role in the micturition reflex by modulating the threshold for activation of capsaicin sensitive and insensitive bladder sensory afferents.


Assuntos
Receptores de Epoprostenol/antagonistas & inibidores , Micção/efeitos dos fármacos , Urodinâmica/efeitos dos fármacos , Animais , Capsaicina/farmacologia , Modelos Animais de Doenças , Feminino , Indometacina/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Valores de Referência , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Sensibilidade e Especificidade , Micção/fisiologia , Urodinâmica/fisiologia
15.
Pflugers Arch ; 452(5): 513-37, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16649055

RESUMO

Significant progress in understanding the pharmacological characteristics and physiological importance of homomeric and heteromeric P2X channels has been achieved in recent years. P2X channels, gated by ATP and most likely trimerically assembled from seven known P2X subunits, are present in a broad distribution of tissues and are thought to play an important role in a variety of physiological functions, including peripheral and central neuronal transmission, smooth muscle contraction, and inflammation. The known homomeric and heteromeric P2X channels can be distinguished from each other on the basis of pharmacological differences when expressed recombinantly in cell lines, but whether this pharmacological classification holds true in native cells and in vivo is less well-established. Nevertheless, several potent and selective P2X antagonists have been discovered in recent years and shown to be efficacious in various animal models including those for visceral organ function, chronic inflammatory and neuropathic pain, and inflammation. The recent advancement of drug candidates targeting P2X channels into human trials, confirms the medicinal exploitability of this novel target family and provides hope that safe and effective medicines for the treatment of disorders involving P2X channels may be identified in the near future.


Assuntos
Trifosfato de Adenosina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Ativação do Canal Iônico/fisiologia , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo , Sítios de Ligação , Ativação do Canal Iônico/efeitos dos fármacos , Ligação Proteica , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2X2
16.
Br J Pharmacol ; 147 Suppl 2: S132-43, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16465177

RESUMO

Lower urinary tract symptoms (LUTS) are present in many common urological syndromes. However, their current suboptimal management by muscarinic and alpha(1)-adrenoceptor antagonists leaves a significant opportunity for the discovery and development of superior medicines. As potential targets for such therapeutics, purinoceptors have emerged over the last two decades from investigations that have established a prominent role for ATP in the regulation of urinary bladder function under normal and pathophysiological conditions. In particular, evidence suggests that ATP signaling via P2X(1) receptors participates in the efferent control of detrusor smooth muscle excitability, and that this function may be heightened in disease and aging. ATP also appears to be involved in bladder sensation, via activation of P2X(3) and P2X(2/3) receptors on sensory afferent neurons, both within the bladder itself and possibly at central synapses. Such findings are based on results from classical pharmacological and localization studies in non-human and human tissues, knockout mice, and studies using recently identified pharmacological antagonists--some of which possess attributes that offer the potential for optimization into candidate drug molecules. Based on recent advances in this field, it is clearly possible that the development of selective antagonists for these receptors will occur that could lead to therapies offering better relief of sensory and motor symptoms for patients, while minimizing the systemic side effects that limit current medicines.


Assuntos
Receptores Purinérgicos/metabolismo , Doenças da Bexiga Urinária/metabolismo , Bexiga Urinária/metabolismo , Micção , Trifosfato de Adenosina/metabolismo , Animais , Desenho de Fármacos , Humanos , Contração Muscular , Músculo Liso/inervação , Músculo Liso/metabolismo , Neurônios Aferentes/metabolismo , Neurônios Eferentes/metabolismo , Fenóis/farmacologia , Fenóis/uso terapêutico , Compostos Policíclicos/farmacologia , Compostos Policíclicos/uso terapêutico , Antagonistas Purinérgicos , Pirimidinas/farmacologia , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3 , Bexiga Urinária/inervação , Doenças da Bexiga Urinária/tratamento farmacológico , Doenças da Bexiga Urinária/fisiopatologia
17.
Br J Pharmacol ; 147(3): 335-45, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16331286

RESUMO

Prostacyclin (PGI2) possesses various physiological functions, including modulation of nociception, inflammation and cardiovascular activity. Elucidation of these functions has been hampered by the absence of selective IP receptor antagonists. Two structurally distinct series of IP receptor antagonists have been developed: 4,5-dihydro-1H-imidazol-2-yl)-[4-(4-isopropoxy-benzyl)-phenyl]-amine (RO1138452) and R-3-(4-fluoro-phenyl)-2-[5-(4-fluoro-phenyl)-benzofuran-2-ylmethoxycarbonylamino]-propionic acid (RO3244794).RO1138452 and RO3244794 display high affinity for IP receptors. In human platelets, the receptor affinities (pKi) were 9.3 +/- 0.1 and 7.7 +/- 0.03, respectively; in a recombinant IP receptor system, pKi values were 8.7 +/- 0.06 and 6.9 +/- 0.1, respectively. Functional antagonism of RO1138452 and RO3244794 was studied by measuring inhibition of carbaprostacyclin-induced cAMP accumulation in CHO-K1 cells stably expressing the human IP receptor. The antagonist affinities (pKi) of RO1138452 and RO3244794 were 9.0 +/- 0.06 and 8.5 +/- 0.11, respectively. Selectivity profiles for RO1138452 and RO3244794 were determined via a panel of receptor binding and enzyme assays. RO1138452 displayed affinity at I2 (8.3) and PAF (7.9) receptors, while RO3244794 was highly selective for the IP receptor: pKi values for EP1 (< 5), EP3 (5.38), EP4 (5.74) and TP (5.09). RO1138452 (1-10 mg kg(-1), i.v.) and RO3244794 (1-30 mg kg(-1), i.v.) significantly reduced acetic acid-induced abdominal constrictions. RO1138452 (3-100 mg kg(-1), p.o.) and RO3244794 (0.3-30 mg kg(-1), p.o.) significantly reduced carrageenan-induced mechanical hyperalgesia and edema formation. RO3244794 (1 and 10 mg kg(-1), p.o.) also significantly reduced chronic joint discomfort induced by monoiodoacetate. These data suggest that RO1138452 and RO3244794 are potent and selective antagonists for both human and rat IP receptors and that they possess analgesic and anti-inflammatory potential.


Assuntos
Benzofuranos/farmacologia , Compostos de Benzil/farmacologia , Imidazóis/farmacologia , Propionatos/farmacologia , Receptores de Epoprostenol/antagonistas & inibidores , Animais , Células CHO , Cricetinae , AMP Cíclico/metabolismo , Dinoprostona/farmacologia , Relação Dose-Resposta a Droga , Epoprostenol/farmacologia , Humanos , Hiperalgesia/tratamento farmacológico , Masculino , Ratos , Ratos Sprague-Dawley
18.
J Physiol ; 567(Pt 2): 621-39, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15961431

RESUMO

Extracellular ATP plays a role in nociceptive signalling and sensory regulation of visceral function through ionotropic receptors variably composed of P2X2 and P2X3 subunits. P2X2 and P2X3 subunits can form homomultimeric P2X2, homomultimeric P2X3, or heteromultimeric P2X2/3 receptors. However, the relative contribution of these receptor subtypes to afferent functions of ATP in vivo is poorly understood. Here we describe null mutant mice lacking the P2X2 receptor subunit (P2X2-/-) and double mutant mice lacking both P2X2 and P2X3 subunits (P2X2/P2X3(Dbl-/-)), and compare these with previously characterized P2X3-/- mice. In patch-clamp studies, nodose, coeliac and superior cervical ganglia (SCG) neurones from wild-type mice responded to ATP with sustained inward currents, while dorsal root ganglia (DRG) neurones gave predominantly transient currents. Sensory neurones from P2X2-/- mice responded to ATP with only transient inward currents, while sympathetic neurones had barely detectable responses. Neurones from P2X2/P2X3(Dbl-/-) mice had minimal to no response to ATP. These data indicate that P2X receptors on sensory and sympathetic ganglion neurones involve almost exclusively P2X2 and P2X3 subunits. P2X2-/- and P2X2/P2X3(Dbl-/-) mice had reduced pain-related behaviours in response to intraplantar injection of formalin. Significantly, P2X3-/-, P2X2-/-, and P2X2/P2X3(Dbl-/-) mice had reduced urinary bladder reflexes and decreased pelvic afferent nerve activity in response to bladder distension. No deficits in a wide variety of CNS behavioural tests were observed in P2X2-/- mice. Taken together, these data extend our findings for P2X3-/- mice, and reveal an important contribution of heteromeric P2X2/3 receptors to nociceptive responses and mechanosensory transduction within the urinary bladder.


Assuntos
Trifosfato de Adenosina/metabolismo , Mecanotransdução Celular , Neurônios Aferentes/metabolismo , Dor/metabolismo , Receptores Purinérgicos P2/metabolismo , Bexiga Urinária/fisiopatologia , Animais , Camundongos , Camundongos Knockout , Contração Muscular , Subunidades Proteicas , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3 , Reflexo , Relação Estrutura-Atividade , Bexiga Urinária/inervação
19.
Bioorg Med Chem Lett ; 15(6): 1697-700, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15745824

RESUMO

Replacement of the N-butyl side-chain of lead 5-HT4 receptor antagonist 2 with propanesulfonylpiperidinyl, morpholinyl, and piperazinyl groups led to higher affinity analogs 4-6. In vitro drug metabolism screens and cassette pharmacokinetic studies in the dog led to identification of the N-methylpiperazinyl analog (6b), which displayed pharmacokinetic, selectivity, and safety parameters sufficient for advancement to the clinic for the treatment of urinary incontinence.


Assuntos
Compostos Heterocíclicos com 2 Anéis/química , Compostos Heterocíclicos com 2 Anéis/farmacologia , Antagonistas do Receptor 5-HT4 de Serotonina , Animais , Cães , Compostos Heterocíclicos com 2 Anéis/farmacocinética , Camundongos , Modelos Químicos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Suínos , Porco Miniatura
20.
Prostate ; 63(4): 358-68, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15611996

RESUMO

BACKGROUND: Sensory peptide neurotransmitters have been implicated as significant regulators of prostate growth. This study was designed to evaluate the role of neurokinins in proliferation, differentiation, and contraction of canine prostate cells in culture. METHODS: NK1, NK2, and NK3 receptor subtypes were localized in canine prostate tissue by immunocytochemistry and ligand binding studies. Functional effects of neurokinin agonists were tested on cell differentiation (expression of smooth muscle actin (SMA)), proliferation (MTS assay), and contraction of canine prostate cells in culture. RESULTS: Immunocytochemical staining of canine prostate sections revealed strong stromal staining for NK1 together with weak stromal staining for NK2 and even weaker staining for NK3. Furthermore, there was overlapping localization of NK1 receptors, substance P (SP), and calcitonin gene-regulated peptide (CGRP) in prostate tissue sections. SP caused concentration-dependent increase in SMA expression that was attenuated in a concentration-dependent manner by YM-44778, a non-selective antagonist for neurokinin receptors, but not by either the NK2 antagonist (SR-48968) nor by the NK3 antagonist (SB-223412). SP and neurokinin A (NKA) also caused a modest contraction of stromal cells in collagen gels. NKA stimulated proliferation of prostate epithelial cells without any apoptotic effect, which was attenuated by SR-48968. Surprisingly, in binding studies NK3 appeared to be the most abundant neurokinin receptor subtype, although functional studies failed to reveal significant coupling of this receptor. CONCLUSIONS: Our results suggest that, at least in vitro, neurokinins have modest effects on canine prostate epithelial cell proliferation, stromal differentiation, and contraction.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Próstata/citologia , Próstata/metabolismo , Receptores de Taquicininas/metabolismo , Substância P/metabolismo , Animais , Diferenciação Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Células Cultivadas , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Imuno-Histoquímica , Masculino , Músculo Liso/citologia , Músculo Liso/metabolismo , Neurocinina A/farmacologia , Quinolinas/metabolismo , Quinolinas/farmacologia , Receptores da Neurocinina-1/metabolismo , Receptores da Neurocinina-2/metabolismo , Receptores da Neurocinina-3/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Substância P/farmacologia , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...