Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 23(1): 65-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37563291

RESUMO

Moiré superlattices host a rich variety of correlated electronic phases. However, the moiré potential is fixed by interlayer coupling, and it is dependent on the nature of carriers and valleys. In contrast, it has been predicted that twisted hexagonal boron nitride (hBN) layers can impose a periodic electrostatic potential capable of engineering the properties of adjacent functional layers. Here, we show that this potential is described by a theory of electric polarization originating from the interfacial charge redistribution, validated by its dependence on supercell sizes and distance from the twisted interfaces. This enables controllability of the potential depth and profile by controlling the twist angles between the two interfaces. Employing this approach, we further demonstrate how the electrostatic potential from a twisted hBN substrate impedes exciton diffusion in semiconductor monolayers, suggesting opportunities for engineering the properties of adjacent functional layers using the surface potential of a twisted hBN substrate.

2.
J Exp Biol ; 224(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34286832

RESUMO

Miniature insects must overcome significant viscous resistance in order to fly. They typically possess wings with long bristles on the fringes and use a clap-and-fling mechanism to augment lift. These unique solutions to the extreme conditions of flight at tiny sizes (<2 mm body length) suggest that natural selection has optimized wing design for better aerodynamic performance. However, species vary in wingspan, number of bristles (n) and bristle gap (G) to diameter (D) ratio (G/D). How this variation relates to body length (BL) and its effects on aerodynamics remain unknown. We measured forewing images of 38 species of thrips and 21 species of fairyflies. Our phylogenetic comparative analyses showed that n and wingspan scaled positively and similarly with BL across both groups, whereas G/D decreased with BL, with a sharper decline in thrips. We next measured aerodynamic forces and visualized flow on physical models of bristled wings performing clap-and-fling kinematics at a chord-based Reynolds number of 10 using a dynamically scaled robotic platform. We examined the effects of dimensional (G, D, wingspan) and non-dimensional (n, G/D) geometric variables on dimensionless lift and drag. We found that: (1) increasing G reduced drag more than decreasing D; (2) changing n had minimal impact on lift generation; and (3) varying G/D minimally affected aerodynamic forces. These aerodynamic results suggest little pressure to functionally optimize n and G/D. Combined with the scaling relationships between wing variables and BL, much wing variation in tiny flying insects might be best explained by underlying shared growth factors.


Assuntos
Voo Animal , Asas de Animais , Animais , Fenômenos Biomecânicos , Insetos , Modelos Biológicos , Filogenia
3.
Integr Comp Biol ; 61(5): 1619-1630, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34143201

RESUMO

Numerous aquatic invertebrates use drag-based metachronal rowing for swimming, in which closely spaced appendages are oscillated starting from the posterior, with each appendage phase-shifted in time relative to its neighbor. Continuously swimming species such as Antarctic krill generally use "pure metachronal rowing" consisting of a metachronal power stroke and a metachronal recovery stroke, while burst swimming species such as many copepods and mantis shrimp typically use "hybrid metachronal rowing" consisting of a metachronal power stroke followed by a synchronous or nearly synchronous recovery stroke. Burst swimming organisms need to rapidly accelerate in order to capture prey and/or escape predation, and it is unknown whether hybrid metachronal rowing can augment acceleration and swimming speed compared to pure metachronal rowing. Simulations of rigid paddles undergoing simple harmonic motion showed that collisions between adjacent paddles restrict the maximum stroke amplitude for pure metachronal rowing. Hybrid metachronal rowing similar to that observed in mantis shrimp (Neogonodactylus bredini) permits oscillation at larger stroke amplitude while avoiding these collisions. We comparatively examined swimming speed, acceleration, and wake structure of pure and hybrid metachronal rowing strategies by using a self-propelling robot. Both swimming speed and peak acceleration of the robot increased with increasing stroke amplitude. Hybrid metachronal rowing permitted operation at larger stroke amplitude without collision of adjacent paddles on the robot, augmenting swimming speed and peak acceleration. Hybrid metachronal rowing generated a dispersed wake unlike narrower, downward-angled jets generated by pure metachronal rowing. Our findings suggest that burst swimming animals with small appendage spacing, such as copepods and mantis shrimp, can use hybrid metachronal rowing to generate large accelerations via increasing stroke amplitude without concern of appendage collision.


Assuntos
Aceleração , Natação , Animais , Fenômenos Biomecânicos , Extremidades , Invertebrados
4.
Integr Comp Biol ; 61(5): 1608-1618, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34050744

RESUMO

Numerous species of aquatic invertebrates, including crustaceans, swim by oscillating multiple closely spaced appendages. The coordinated, out-of-phase motion of these appendages, known as "metachronal paddling," has been well-established to improve swimming performance relative to synchronous paddling. Invertebrates employing this propulsion strategy cover a wide range of body sizes and shapes, but the ratio of appendage spacing (G) to the appendage length (L) has been reported to lie in a comparatively narrow range of 0.2 < G/L ≤ 0.65. The functional role of G/L on metachronal swimming performance is unknown. We hypothesized that for a given Reynolds number and stroke amplitude, hydrodynamic interactions promoted by metachronal stroke kinematics with small G/L can increase forward swimming speed. We used a dynamically scaled self-propelling robot to comparatively examine swimming performance and wake development of metachronal and synchronous paddling under varying G/L, phase lag, and stroke amplitude. G/L was varied from 0.4 to 1.5, with the expectation that when G/L is large, there should be no performance difference between metachronal and synchronous paddling due to a lack of interaction between vortices that form on the appendages. Metachronal stroking at nonzero phase lag with G/L in the biological range produced faster swimming speeds than synchronous stroking. As G/L increased and as stroke amplitude decreased, the influence of phase lag on the swimming speed of the robot was reduced. For smaller G/L, vortex interactions between adjacent appendages generated a horizontally oriented wake and increased momentum fluxes relative to larger G/L, which contributed to increasing swimming speed. We find that while metachronal motion augments swimming performance for closely spaced appendages (G/L <1), moderately spaced appendages (1.0 ≤ G/L ≤ 1.5) can benefit from the metachronal motion only when the stroke amplitude is large.


Assuntos
Extremidades , Natação , Animais , Fenômenos Biomecânicos , Hidrodinâmica , Invertebrados
5.
Bioinspir Biomim ; 16(6)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-33171451

RESUMO

Metachronal paddling is a common method of drag-based aquatic propulsion, in which a series of swimming appendages are oscillated, with the motion of each appendage phase-shifted relative to the neighboring appendages. Ecologically and economically important euphausiid species such as Antarctic krill (Euphausia superba) swim constantly by stroking their paddling appendages (pleopods), with locomotion accounting for the bulk of their metabolic expenditure. They tailor their swimming gaits for behavioral and energetic needs by changing pleopod kinematics. The functional importance of inter-pleopod phase lag (ϕ) to metachronal swimming performance and wake structure is unknown. To examine this relation, we developed a geometrically and dynamically scaled robot ('krillbot') capable of self-propulsion. Krillbot pleopods were prescribed to mimic published kinematics of fast-forward swimming (FFW) and hovering (HOV) gaits ofE. superba, and the Reynolds number and Strouhal number of the krillbot matched well with those calculated for freely-swimmingE. superba. In addition to examining published kinematics with unevenϕbetween pleopod pairs, we modifiedE. superbakinematics to uniformly varyϕfrom 0% to 50% of the cycle. Swimming speed and thrust were largest for FFW withϕbetween 15%-25%, coincident withϕrange observed in FFW gait ofE. superba. In contrast to synchronous rowing (ϕ= 0%) where distances between hinged joints of adjacent pleopods were nearly constant throughout the cycle, metachronal rowing (ϕ> 0%) brought adjacent pleopods closer together and moved them farther apart. This factor minimized body position fluctuation and augmented metachronal swimming speed. Though swimming speed was lowest for HOV, a ventrally angled downward jet was generated that can assist with weight support during feeding. In summary, our findings show that inter-appendage phase lag can drastically alter both metachronal swimming speed and the large-scale wake structure.


Assuntos
Extremidades , Natação , Fenômenos Biomecânicos , Marcha
6.
R Soc Open Sci ; 6(10): 191387, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31824735

RESUMO

Negatively buoyant freely swimming crustaceans such as krill must generate downward momentum in order to maintain their position in the water column. These animals use a drag-based propulsion strategy, where pairs of closely spaced swimming limbs are oscillated rhythmically from the tail to head. Each pair is oscillated with a phase delay relative to the neighbouring pair, resulting in a metachronal wave travelling in the direction of animal motion. It remains unclear how oscillations of limbs in the horizontal plane can generate vertical momentum. Using particle image velocimetry measurements on a robotic model, we observed that metachronal paddling with non-zero phase lag created geometries of adjacent paddles that promote the formation of counter-rotating vortices. The interaction of these vortices resulted in generating large-scale angled downward jets. Increasing phase lag resulted in more vertical orientation of the jet, and phase lags in the range used by Antarctic krill produced the most total momentum. Synchronous paddling produced lower total momentum when compared with metachronal paddling. Lowering Reynolds number by an order of magnitude below the range of adult krill (250-1000) showed diminished downward propagation of the jet and lower vertical momentum. Our findings show that metachronal paddling is capable of producing flows that can generate both lift (vertical) and thrust (horizontal) forces needed for fast forward swimming and hovering.

7.
Bioinspir Biomim ; 14(4): 046003, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30991375

RESUMO

The smallest flying insects with body lengths under 2 mm show a marked preference for wings consisting of a thin membrane with long bristles, and the use of clap and fling kinematics to augment lift at Reynolds numbers (Re) of approximately 10. Bristled wings have been shown to reduce drag forces in clap and fling, but the aerodynamic roles of several bristled wing geometric variables remain unclear. This study examines the effects of varying the ratio of membrane area (A M) to total wing area (A T) on aerodynamic forces and flow structures generated during clap and fling at Re on the order of 10. We also examine the aerodynamic consequences of scaling bristled wings to Re = 120, relevant to flight of fruit flies. We analyzed published forewing images of 25 species of thrips (Thysanoptera) and found that A M/A T ranged from 14% to 27%, as compared to 11% to 88% previously reported for smaller-sized fairyflies (Hymenoptera). These data were used to develop physical bristled wing models with A M/A T ranging from 15% to 100%, which were tested in a dynamically scaled robotic clap and fling model. At all Re, bristled wings produced slightly lower lift coefficients (C L) when compared to solid wings, but provided significant drag reduction. At Re = 10, largest values of peak lift over peak drag ratios were generated by wing models with A M/A T similar to thrips forewings (15% to 30%). Circulation of the leading edge vortex and trailing edge vortex decreased with decreasing A M/A T during clap and fling at Re = 10. Decreased chordwise circulation near the wing tip, vortex shedding, and interaction between flow structures from clap with those from fling resulted in lowering C L generated via clap and fling at Re = 120 as compared to Re = 10. Clap and fling becomes less beneficial at Re = 120, regardless of the drag reduction provided by bristled wings.


Assuntos
Himenópteros/fisiologia , Tisanópteros/fisiologia , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Robótica/instrumentação , Tisanópteros/anatomia & histologia , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...