Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 50, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303091

RESUMO

BACKGROUND: The majority of vector-borne disease cases in the USA are caused by pathogens spread by ticks, most commonly the blacklegged tick, Ixodes scapularis. Personal protection against tick bites, including use of repellents, is the primary defense against tick-borne diseases. Tick repellents registered by the Environmental Protection Agency (EPA) are well documented to be safe as well as effective against ticks. Another group of tick repellent products, 25(b) exempt or minimum risk products, use alternative, mostly botanically derived, active ingredients. These are considered to pose minimal risk to human health and therefore are exempt from EPA registration; efficacy testing is not mandated for these products. METHODS: We used a finger bioassay to evaluate the repellency against I. scapularis nymphs for 11 formulated 25(b) exempt products together with two positive control DEET-based EPA registered products. Repellency was assessed hourly from 0.5 to 6.5 h after product application. RESULTS: The DEET-based products showed ≥ 97% repellency for all examined timepoints. By contrast, an average of 63% of ticks were repelled in the first 1.5 h after application across the 11 25(b) exempt products, and the average fell to 3% repelled between 2.5 and 6.5 h. Ten of the 11 25(b) exempt products showed statistically similar efficacy to DEET-based products at 30 min after application (repellency of 79-97%). However, only four 25(b) exempt products maintained a level of repellency similar to DEET-based products (> 72%) at the 1.5-h mark, and none of these products were effective in repelling ticks at the timepoints from 2.5 to 6.5 h after application. CONCLUSIONS: Neither the claims on the labels nor specific active ingredients and their concentrations appeared to predict the duration of efficacy we observed for the 25(b) exempt products. These products are not registered with the EPA, so the methods used to determine the application guidelines on their labels are unclear. Consumers should be aware that both the level of efficacy and the duration of repellency may differ among unregulated 25(b) exempt repellent products labeled for use against ticks. We encourage more research on these products and the 25(b) exempt active ingredients they contain to help determine and improve their efficacy as repellents under different conditions.


Assuntos
Repelentes de Insetos , Ixodes , Picadas de Carrapatos , Animais , Humanos , DEET/farmacologia , Repelentes de Insetos/farmacologia , Ninfa , Bioensaio/métodos
2.
Parasit Vectors ; 16(1): 228, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430360

RESUMO

BACKGROUND: Numerous bioassay methods have been used to test the efficacy of repellents for ticks, but the comparability of results across different methods has only been evaluated in a single study. Of particular interest are comparisons between bioassays that use artificial containers (in vitro) with those conducted on a human subject (in vivo) for efficacy testing of new potential unregistered active ingredients, which most commonly use in vitro methods. METHODS: We compared four different bioassay methods and evaluated three ingredients (DEET [N,N-Diethyl-meta-toluamide], peppermint oil and rosemary oil) and a negative control (ethanol) over a 6-h period. Two of the methods tested were in vivo bioassay methods in which the active ingredient was applied to human skin (finger and forearm bioassays), and the other two methods were in vitro methods using artificial containers (jar and petri dish bioassays). All four bioassays were conducted using Ixodes scapularis nymphs. We compared the results using nymphs from two different tick colonies that were derived from I. scapularis collected in the US states of Connecticut and Rhode Island (northern origin) and Oklahoma (southern origin), expecting that ticks of different origin would display differences in host-seeking behavior. RESULTS: The results between bioassay methods did not differ significantly, even when comparing those that provide the stimulus of human skin with those that do not. We also found that tick colony source can impact the outcome of repellency bioassays due to differences in movement speed; behavioral differences were incorporated into the assay screening. DEET effectively repelled nymphs for the full 6-h duration of the study. Peppermint oil showed a similar repellent efficacy to DEET during the first hour, but it decreased sharply afterwards. Rosemary oil did not effectively repel nymphs across any of the time points. CONCLUSIONS: The repellency results did not differ significantly between the four bioassay methods tested. The results also highlight the need to consider the geographic origin of ticks used in repellency bioassays in addition to species and life stage. Finally, our results indicate a limited repellent efficacy of the two essential oils tested, which highlights the need for further studies on the duration of repellency for similar botanically derived active ingredients and for evaluation of formulated products.


Assuntos
Repelentes de Insetos , Ixodes , Humanos , Animais , DEET/farmacologia , Bioensaio , Connecticut , Etanol , Repelentes de Insetos/farmacologia , Ninfa
3.
Ticks Tick Borne Dis ; 14(4): 102167, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36965260

RESUMO

Human cases of relapsing fever (RF) in North America are caused primarily by Borrelia hermsii and Borrelia turicatae, which are spread by argasid (soft) ticks, and by Borrelia miyamotoi, which is transmitted by ixodid (hard) ticks. In some regions of the United States, the ranges of the hard and soft tick RF species are known to overlap; in many areas, recorded ranges of RF spirochetes overlap with Lyme disease (LD) group Borrelia spirochetes. Identification of RF clusters or cases detected in unusual geographic localities might prompt public health agencies to investigate environmental exposures, enabling prevention of additional cases through locally targeted mitigation. However, exposure risks and mitigation strategies differ among hard and soft tick RF, prompting a need for additional diagnostic strategies that differentiate hard tick from soft tick RF. We evaluated the ability of new and previously described recombinant antigens in serological assays to differentiate among prior exposures in mice to LD, soft or hard tick RF spirochetes. We extracted whole-cell protein lysates from RF Borrelia cultures and synthesized six recombinant RF antigens (Borrelia immunogenic protein A (BipA) derived from four species of RF Borrelia, glycerophosphodiester phosphodiesterase (GlpQ), and Borrelia miyamotoi membrane antigen A (BmaA)) to detect reactivity in laboratory derived (Peromyscus sp. and Mus sp.) mouse serum infected with RF and LD Borrelia species. Among 44 Borrelia exposed mouse samples tested, all five mice exposed to LD spirochetes were correctly differentiated from the 39 mice exposed to RF Borrelia using the recombinant targets. Of the 39 mice exposed to RF spirochetes, 28 were accurately categorized to species of exposure (71%). Segregation among soft tick RF species (Borrelia hermsii, Borrelia parkeri and Borrelia turicatae) was inadequate (58%) owing to observed cross-reactivity among recombinant BipA protein targets. However, among the 28 samples accurately separated to species, all were accurately assigned to soft tick or hard tick RF type. Although not adequately specific to accurately categorize exposure to soft tick RF species, the recombinant BipA protein targets from soft and hard tick RF species show utility in accurately discriminating mouse exposures to LD or RF Borrelia, and accurately segregate hard tick from soft tick RF Borrelia exposure.


Assuntos
Argasidae , Borrelia , Ixodidae , Febre Recorrente , Picadas de Carrapatos , Animais , Camundongos , Humanos , Estados Unidos , Febre Recorrente/diagnóstico
4.
Nat Commun ; 12(1): 3696, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140472

RESUMO

Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting on skin immunity. Thus, the biology of arthropods should be taken into consideration when developing strategies to control vector-borne diseases.


Assuntos
Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo , Pele/parasitologia , Carrapatos/metabolismo , Carrapatos/microbiologia , Anaplasma phagocytophilum/patogenicidade , Animais , Artrópodes/metabolismo , Artrópodes/microbiologia , Artrópodes/fisiologia , Linhagem Celular , Dermacentor/metabolismo , Dermacentor/microbiologia , Dermacentor/fisiologia , Vesículas Extracelulares/ultraestrutura , Francisella tularensis/patogenicidade , Ontologia Genética , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/parasitologia , Microscopia Intravital , Ixodes/metabolismo , Ixodes/microbiologia , Ixodes/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteômica , Proteínas R-SNARE/metabolismo , Pele/imunologia , Pele/microbiologia , Linfócitos T/metabolismo , Espectrometria de Massas em Tandem , Proteína 2 Associada à Membrana da Vesícula/metabolismo
5.
Exp Appl Acarol ; 82(4): 543-557, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33091146

RESUMO

The Amblyomma maculatum Koch group of ixodid ticks consists of three species: A. maculatum, A. triste, and A. tigrinum. However, since Koch described this group in 1844, the systematics of its members has been the subject of ongoing debate. This is especially true of A. maculatum and A. triste; recent molecular analyses reveal insufficient genetic divergence to separate these as distinct species. Further confounding this issue is the discovery in 2014 of A. maculatum group ticks in southern Arizona (AZ), USA, that share morphological characteristics with both A. triste and A. maculatum. To biologically evaluate the identity of A. maculatum group ticks from southern Arizona, we analyzed the reproductive compatibility between specimens of A. maculatum group ticks collected from Georgia (GA), USA, and southern Arizona. Female ticks from both Arizona and Georgia were mated with males from both the Georgia and Arizona Amblyomma populations, creating two homologous and two heterologous F1 cohorts of ticks: GA ♀/GA ♂, AZ ♀/AZ ♂, GA ♀/AZ ♂, and AZ ♀/GA ♂. Each cohort was maintained separately into the F2 generation with F1 females mating only with F1 males from their same cohort. Survival and fecundity parameters were measured for all developmental stages. The observed survival parameters for heterologous cohorts were comparable to those of the homologous cohorts through the F1 generation. However, the F1 heterologous females produced F2 egg clutches that did not hatch, thus indicating that the Arizona and Georgia populations of A. maculatum group ticks tested here represent different biological species.


Assuntos
Ixodidae , Rickettsia , Carrapatos , Amblyomma , Animais , Arizona , Feminino , Georgia , Ixodidae/genética , Masculino
6.
Ticks Tick Borne Dis ; 11(6): 101517, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32993937

RESUMO

Anaplasma platys is a Gram-negative, obligate intracellular bacteria that causes canine infectious cyclic thrombocytopenia in dogs. The brown dog tick Rhipicephalus sanguineus sensu lato is presumed to be the vector of A. platys based on the overlap in distribution of R. sanguineus and A. platys infections, detection of A. platys DNA in both flat and engorged field-collected R. sanguineus, and the fact that dogs are primary hosts of both brown dog ticks and A. platys. However, the only study evaluating the vector competence of R. sanguineus for A. platys under controlled laboratory conditions reported an apparent inability of ticks to acquire or maintain the pathogen. In 2016, engorged female Rhipicephalus sanguineus sensu stricto ticks were collected off dogs to start a laboratory tick colony. After one generation of colony maintenance on tick-naïve and pathogen-free New Zealand White rabbits, a rabbit used to feed F1 adults seroconverted to Anaplasma phagocytophilum antigen. PCR and subsequent DNA sequencing identified the presence of A. platys in both the adult ticks fed on this rabbit and their resulting F2 progenies. Retrospective testing of all previous (P and F1) life stages of this colony demonstrated that the infection originated from one field-collected A. platys-infected female whose progeny was propagated in the laboratory and produced the PCR-positive F1 adults. Over the following (F2-F4) generations, the prevalence of A. platys in this colony reached 90-100 % indicating highly efficient transovarial and horizontal transmission, as well as transstadial maintenance, of this pathogen by R. sanguineus s.s.


Assuntos
Anaplasma/fisiologia , Vetores Aracnídeos/microbiologia , Interações Hospedeiro-Patógeno , Rhipicephalus sanguineus/microbiologia , Animais , Feminino , Larva/crescimento & desenvolvimento , Larva/microbiologia , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia
7.
J Med Entomol ; 57(5): 1635-1639, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32338290

RESUMO

The invasive Asian longhorned tick, Haemaphysalis longicornis Neumann, was first detected in the United States in 2017. It has since been found in 12 states, and there is concern that the tick's parthenogenetic ability and wide variety of host species may allow for broader dissemination. Of the tick-borne diseases endemic to the United States, Rocky Mountain spotted fever (RMSF), a rapidly progressive and potentially fatal disease caused by Rickettsia rickettsii, is the most severe. There is considerable geographical overlap between spotted fever rickettsioses cases, which include RMSF, and the currently known distribution of H. longicornis, providing the potential for this tick to encounter this pathogen. We have evaluated the ability of H. longicornis to acquire and transmit R. rickettsii under laboratory conditions. Haemaphysalis longicornis as larvae and nymphs acquired the pathogen while feeding on infected guinea pigs. The infection persisted through every life stage, all of which were able to transmit R. rickettsii to naïve hosts. The pathogen was also transmitted at a low frequency between generations of H. longicornis through the ova. While H. longicornis was demonstrated to be a competent vector for R. rickettsii under laboratory conditions, the probability of its involvement in the maintenance and transmission of this pathogen in nature, as well as its potential impact on human health, requires further study.


Assuntos
Ixodidae/microbiologia , Rickettsia rickettsii , Febre Maculosa das Montanhas Rochosas/transmissão , Animais , Cobaias , Coelhos
8.
J Med Entomol ; 57(4): 1141-1148, 2020 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-32073128

RESUMO

The invasive, human-biting Asian longhorned tick, Haemaphysalis longicornis Neumann, is establishing in the United States. This tick is a threat to public health in its native range in Asia, serving as a vector of severe fever with thrombocytopenia syndrome virus and Rickettsia japonica, the agent of Japanese spotted fever. However, there is a lack of published information specifically for H. longicornis concerning the efficacy of generally recommended personal tick bite prevention measures. We, therefore, evaluated permethrin-treated clothing and formulated human skin repellent products, representing the six repellent active ingredients generally recommended for tick bite prevention by the Centers for Disease Control and Prevention (CDC), against H. longicornis nymphs from a colony established with adult ticks collected in New York state. Reluctance of H. longicornis nymphs to stay in contact with nontreated human skin precluded the use of a human skin bioassay to optimally evaluate repellency. In a Petri dish choice bioassay, all tested product formulations were highly effective with estimated repellencies ranging from 93 to 97%. In addition, we observed strong contact irritancy of a summer-weight permethrin-treated garment against H. longicornis nymphs, with 96% of introduced ticks dislodging from the vertically oriented textile within 3 min. These preliminary studies indicate that personal tick bite prevention measures currently recommended by the CDC are effective against the invasive H. longicornis. However, additional studies are needed to explore the efficacy of the evaluated products against different life stages of H. longicornis, as well as ticks collected in the field rather than reared in the laboratory.


Assuntos
Vetores Artrópodes , Ninfa , Substâncias Protetoras , Carrapatos , Animais , Humanos
9.
J Med Entomol ; 57(2): 585-594, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31687749

RESUMO

It has been reported that starving ticks do not transmit spotted fever group Rickettsia immediately upon attachment because pathogenic bacteria exist in a dormant, uninfectious state and require time for 'reactivation' before transmission to a susceptible host. To clarify the length of reactivation period, we exposed guinea pigs to bites of Rickettsia rickettsii-infected Dermacentor variabilis (Say) and allowed ticks to remain attached for predetermined time periods from 0 to 48 h. Following removal of attached ticks, salivary glands were immediately tested by PCR, while guinea pigs were observed for 10-12 d post-exposure. Guinea pigs in a control group were subcutaneously inoculated with salivary glands from unfed D. variabilis from the same cohort. In a parallel experiment, skin at the location of tick bite was also excised at the time of tick removal to ascertain dissemination of pathogen from the inoculation site. Animals in every exposure group developed clinical and pathological signs of infection. The severity of rickettsial infection in animals increased with the length of tick attachment, but even attachments for less than 8 h resulted in clinically identifiable infection in some guinea pigs. Guinea pigs inoculated with salivary glands from unfed ticks also became severely ill. Results of our study indicate that R. rickettsii residing in salivary glands of unfed questing ticks does not necessarily require a period of reactivation to precede the salivary transmission and ticks can transmit infectious Rickettsia virtually as soon as they attach to the host.


Assuntos
Vetores Artrópodes/fisiologia , Dermacentor/fisiologia , Rickettsia rickettsii/fisiologia , Febre Maculosa das Montanhas Rochosas/transmissão , Animais , Vetores Artrópodes/microbiologia , Dermacentor/microbiologia , Feminino , Cobaias , Masculino
10.
Ticks Tick Borne Dis ; 11(1): 101311, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31640938

RESUMO

The invasive, human-biting Asian longhorned tick, Haemaphysalis longicornis, was detected in New Jersey in the eastern United States in August of 2017 and by November of 2018 this tick had been recorded from 45 counties across 9 states, primarily along the Eastern Seaboard. The establishment of H. longicornis in the United States has raised the questions of how commonly it will bite humans and which native pathogens may naturally infect this tick. There also is a need for experimental vector competence studies with native pathogens to determine if H. longicornis can acquire a given pathogen while feeding, pass it transstadially, and then transmit the pathogen in the next life stage. In this experimental study, we evaluated the vector competence of a population of H. longicornis originating from the United States (New York) for a native isolate (B31) of the Lyme disease spirochete, Borrelia burgdorferi sensu stricto (s.s.). In agreement with a previous experimental study on the vector competence of H. longicornis for Borrelia garinii, we found that uninfected H. longicornis larvae could acquire B. burgdorferi s.s. while feeding on infected Mus musculus mice (infection prevalence >50% in freshly fed larvae) but that the infection was lost during the molt to the nymphal stage. None of 520 tested molted nymphs were found to be infected, indicating that transstadial passage of B. burgdorferi s.s. is absent or rare in H. longicornis; and based on the potential error associated with the number of nymphs testing negative in this study, we estimate that the upper 95% limit for infection prevalence was 0.73%. An Ixodes scapularis process control showed both effective acquisition of B. burgdorferi s.s. from infected mice by uninfected larvae and transstadial passage to the nymphal stage (infection prevalence of 80-82% for both freshly fed larvae and molted nymphs). We also observed that although H. longicornis larvae could be compelled to feed on mice by placing the ticks within feeding capsules, attachment and feeding success was minimal (<0.5%) when larvae were placed freely on the fur of the mice. We conclude that H. longicornis is unlikely to contribute more than minimally, if at all, to transmission of Lyme disease spirochetes in the United States.


Assuntos
Vetores Aracnídeos/fisiologia , Borrelia burgdorferi/fisiologia , Ixodes/microbiologia , Doença de Lyme/transmissão , Animais , Feminino , Humanos , Espécies Introduzidas , Ixodidae , Larva , Doença de Lyme/microbiologia , Camundongos , New York , Ninfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...