Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 114(38): 12398-405, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20815360

RESUMO

Ultrafast transient absorption spectroscopy was used to investigate the photochemistry of adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), and n-propylcobalamin (PrCbl) at pH 2 where the axial nitrogenous ligand is replaced by a water molecule. The evolution of the difference spectrum reveals the internal conversion process and spectral characteristics of the S(1) excited state. The photolysis yield in the base-off cobalamins is controlled by competition between internal conversion and bond homolysis. This is in direct contrast to the process in most base-on alkylcobalamins where primary photolysis occurs with near unit quantum yield and the photolysis yield is controlled by competition between diffusive separation of the radical pair and geminate recombination. The absence of the axial nitrogenous ligand in the base-off cobalamins modifies the electronic structure and opens a channel for fast nonradiative decay. This channel competes effectively with the channel for bond dissociation, dropping the quantum yield for primary radical pair formation from unity in base-on PrCbl and AdoCbl to 0.2 ± 0.1 and 0.12 ± 0.06 in base-off PrCbl and AdoCbl, respectively. The photolysis of base-off MeCbl is similar to that of base-off AdoCbl and PrCbl with competition between rapid nonradiative decay leading to ground state recovery and formation of a radical pair following bond homolysis.


Assuntos
Cobamidas/química , Simulação de Dinâmica Molecular , Teoria Quântica , Vitamina B 12/análogos & derivados , Concentração de Íons de Hidrogênio , Ligantes , Conformação Molecular , Fotoquímica , Fotólise , Espectrofotometria Ultravioleta , Fatores de Tempo , Vitamina B 12/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...