Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; : 143080, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39146989

RESUMO

Nanotechnology has brought significant advancements to agriculture through the development of engineered nanomaterials (ENPs). Silver nanoparticles (AgNPs) capped with polysaccharides have been applied in agricultural diagnostics, crop pest management, and seed priming. Hyaluronic acid (HA), a natural polysaccharide with bactericidal properties, is considered a growth regulator for plant tissues and an inducer of systemic resistance against plant diseases. Additionally, HA has been employed as a stabilizing agent for AgNPs. This study investigated the synthesis and effects of hyaluronic acid-stabilized silver nanoparticles (HA-AgNPs) as a seed priming agent on lettuce (Lactuca sativa) seed germination. HA-AgNPs were characterized using several techniques, exhibiting spherical morphology and good colloidal stability. Germination assays conducted with 0.1, 0.04, and 0.02 g/L of HA-AgNPs showed a concentration-dependent reduction in seed germination. Conversely, lower concentrations of HA-AgNPs significantly increased germination rates, survival, tolerance indices, and seed water absorption compared to silver ions (Ag+). SEM/EDS indicated more significant potential for HA-AgNPs internalization compared to Ag+. Therefore, these findings are innovative and open new avenues for understanding the impact of Ag+ and HA-AgNPs on seed germination.

2.
J Agric Food Chem ; 68(40): 11105-11113, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32915575

RESUMO

The use of nano- and microparticles as a release system for agrochemicals has been increasing in agricultural sector. However, the production of eco-friendly and smart carriers that can be easily handled in the environment is still a challenge for this technology. In this context, we have developed a biodegradable release system for the herbicide atrazine with magnetic properties. Herein, we investigated the (a) physicochemical properties of the atrazine-loaded magnetic poly(ε-caprolactone) microparticles (MPs:ATZ), (b) in vitro release kinetic profile of the herbicide, and (c) phytotoxicity toward photosynthesis in the aquatic fern Azolla caroliniana. The encapsulation efficiency of the herbicide in the MPs:ATZ was ca. 69%, yielding spherical microparticles with a diameter of ca. 100 µm, a sustained-release profile, and easily manipulated with an external magnetic field. Also, phytotoxicity issues showed that the MPs:ATZ maintained their herbicidal activity via inhibition of PSII, showing lower toxicity compared with the nonencapsulated ATZ at 0.01 and 0.02 µmol·L-1. Therefore, this technology may conveniently promote a novel magnetic controlled release of the herbicide ATZ (with the potential to be collected from a watercourse) and act as a nutrient boost to the nontarget plant, with good herbicidal activity and reduced risk to the environment.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Herbicidas/química , Magnetismo/métodos , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Poliésteres/química , Atrazina/química , Sistemas de Liberação de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Gleiquênias/efeitos dos fármacos , Gleiquênias/metabolismo , Herbicidas/farmacologia , Magnetismo/instrumentação , Nanopartículas/química , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Poliésteres/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA