Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1247761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720545

RESUMO

Despite of the major role of aquaporin (AQP) water channels in controlling transmembrane water fluxes, alternative ways for modulating water permeation have been proposed. In the Central Nervous System (CNS), Aquaporin-4 (AQP4) is reported to be functionally coupled with the calcium-channel Transient-Receptor Potential Vanilloid member-4 (TRPV4), which is controversially involved in cell volume regulation mechanisms and water transport dynamics. The present work aims to investigate the selective role of TRPV4 in regulating plasma membrane water permeability in an AQP4-independent way. Fluorescence-quenching water transport experiments in Aqp4-/- astrocytes revealed that cell swelling rate is significantly increased upon TRPV4 activation and in the absence of AQP4. The biophysical properties of TRPV4-dependent water transport were therefore assessed using the HEK-293 cell model. Calcein quenching experiments showed that chemical and thermal activation of TRPV4 overexpressed in HEK-293 cells leads to faster swelling kinetics. Stopped-flow light scattering water transport assay was used to measure the osmotic permeability coefficient (Pf, cm/s) and activation energy (Ea, kcal/mol) conferred by TRPV4. Results provided evidence that although the Pf measured upon TRPV4 activation is lower than the one obtained in AQP4-overexpressing cells (Pf of AQP4 = 0.01667 ± 0.0007; Pf of TRPV4 = 0.002261 ± 0.0004; Pf of TRPV4 + 4αPDD = 0.007985 ± 0.0006; Pf of WT = 0.002249 ± 0.0002), along with activation energy values (Ea of AQP4 = 0.86 ± 0.0006; Ea of TRPV4 + 4αPDD = 2.73 ± 1.9; Ea of WT = 8.532 ± 0.4), these parameters were compatible with a facilitated pathway for water movement rather than simple diffusion. The possibility to tune plasma membrane water permeability more finely through TRPV4 might represent a protective mechanism in cells constantly facing severe osmotic challenges to avoid the potential deleterious effects of the rapid cell swelling occurring via AQP channels.

2.
Bioorg Chem ; 129: 106152, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36155094

RESUMO

The complexity of neurodegenerative diseases, among which Alzheimer's disease plays a pivotal role, poses one of the tough therapeutic challenges of present time. In this perspective, a multitarget approach appears as a promising strategy to simultaneously interfere with different defective pathways. In this paper, a structural simplification plan was performed on our previously reported multipotent polycyclic compounds, in order to obtain a simpler pharmacophoric central core with improved pharmacokinetic properties, while maintaining the modulating activity on neuronal calcium channels and glycogen synthase kinase 3-beta (GSK-3ß), as validated targets to combat Alzheimer's disease. The molecular pruning approach applied here led to tetrahydroisoindole-dione (1), tetrahydromethanoisoindole-dione (2) and tetrahydroepoxyisoindole-dione (3) structures, easily affordable by Diels-Alder cycloaddition. Preliminary data indicated structure 3 as the most appropriate, thus a SAR study was performed by introducing different substituents, selected on the basis of the commercial availability of the furan derivatives required for the synthetic procedure. The results indicated compound 10 as a promising, structurally atypical, safe and BBB-penetrating Cav modulator, inhibiting both L- and N-calcium channels, likely responsible for the Ca2+ overload observed in Alzheimer's disease. In a multitarget perspective, compound 11 appeared as an effective prototype, endowed with improved Cav inhibitory activity, with respect to the reference drug nifedipine, and encouraging modulating activity on GSK-3ß.


Assuntos
Doença de Alzheimer , Humanos , Glicogênio Sintase Quinase 3 beta , Doença de Alzheimer/tratamento farmacológico , Simulação de Acoplamento Molecular , Canais de Cálcio , Neurônios
3.
Mol Pain ; 18: 17448069221087033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35255745

RESUMO

Fabry disease (FD) is a X-linked lysosomal storage disorder caused by deficient function of the alpha-galactosidase A (α-GalA) enzyme. α-GalA deficiency leads to multisystemic clinical manifestations caused by the preferential accumulation of globotriaosylceramide (Gb3). A hallmark symptom of FD patients is neuropathic pain that appears in the early stage of the disease as a result of peripheral small fiber damage. Previous studies have shown that Acetyl-L-carnitine (ALC) has neuroprotective, neurotrophic, and analgesic activity in animal models of neuropathic pain. To study the action of ALC on neuropathic pain associated with FD, we treated α-GalA gene null mice (α-GalA(-/0)) with ALC for 30 days. In α-Gal KO mice, ALC treatment induced acute and long-lasting analgesia, which persisted 1 month after drug withdrawal. This effect was antagonized by single administration of LY341495, an orthosteric antagonist of mGlu2/3 metabotropic glutamate receptors. We also found an up-regulation of mGlu2 receptors in cultured DRG neurons isolated from 30-day ALC-treated α-GalA KO mice. However, the up-regulation of mGlu2 receptors was no longer present in DRG neurons isolated 30 days after the end of treatment. Taken together, these findings suggest that ALC induces analgesia in an animal model of FD by up-regulating mGlu2 receptors, and that analgesia is maintained by additional mechanisms after ALC withdrawal. ALC might represent a valuable pharmacological strategy to reduce pain in FD patients.


Assuntos
Analgesia , Doença de Fabry , Neuralgia , Receptores de Glutamato Metabotrópico , Acetilcarnitina/farmacologia , Animais , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Doença de Fabry/metabolismo , Humanos , Camundongos , Camundongos Knockout , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Manejo da Dor , Receptores de Glutamato Metabotrópico/metabolismo , alfa-Galactosidase/metabolismo
4.
Pflugers Arch ; 474(2): 243-260, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34734327

RESUMO

The capacity of astrocytes to adapt their biochemical and functional features upon physiological and pathological stimuli is a fundamental property at the basis of their ability to regulate the homeostasis of the central nervous system (CNS). It is well known that in primary cultured astrocytes, the expression of plasma membrane ion channels and transporters involved in homeostatic tasks does not closely reflect the pattern observed in vivo. The individuation of culture conditions that promote the expression of the ion channel array found in vivo is crucial when aiming at investigating the mechanisms underlying their dynamics upon various physiological and pathological stimuli. A chemically defined medium containing growth factors and hormones (G5) was previously shown to induce the growth, differentiation, and maturation of primary cultured astrocytes. Here we report that under these culture conditions, rat cortical astrocytes undergo robust morphological changes acquiring a multi-branched phenotype, which develops gradually during the 2-week period of culturing. The shape changes were paralleled by variations in passive membrane properties and background conductance owing to the differential temporal development of inwardly rectifying chloride (Cl-) and potassium (K+) currents. Confocal and immunoblot analyses showed that morphologically differentiated astrocytes displayed a large increase in the expression of the inward rectifier Cl- and K+ channels ClC-2 and Kir4.1, respectively, which are relevant ion channels in vivo. Finally, they exhibited a large diminution of the intermediate filaments glial fibrillary acidic protein (GFAP) and vimentin which are upregulated in reactive astrocytes in vivo. Taken together the data indicate that long-term culturing of cortical astrocytes in this chemical-defined medium promotes a quiescent functional phenotype. This culture model could aid to address the regulation of ion channel expression involved in CNS homeostasis in response to physiological and pathological challenges.


Assuntos
Astrócitos/metabolismo , Homeostase/fisiologia , Animais , Canais de Cloro CLC-2/metabolismo , Membrana Celular/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Cloretos/metabolismo , Técnicas de Patch-Clamp/métodos , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Ratos Sprague-Dawley , Vimentina/metabolismo
6.
Cell Physiol Biochem ; 55(S1): 196-212, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740285

RESUMO

BACKGROUND/AIMS: The ability of astrocytes to control extracellular volume homeostasis is critical for brain function and pathology. Uncovering the mechanisms of cell volume regulation by astrocytes will be important for identifying novel therapeutic targets for neurological conditions, such as those characterized by imbalances to hydro saline challenges (as in edema) or by altered cell volume regulation (as in glioma). One major challenge in studying the astroglial membrane channels involved in volume homeostasis in cell culture model systems is that the expression patterns of these membrane channels do not resemble those observed in vivo. In our previous study, we demonstrated that rat primary astrocytes grown on nanostructured interfaces based on hydrotalcite-like compounds (HTlc) in vitro are differentiated and display molecular and functional properties of in vivo astrocytes, such as the functional expression of inwardly rectifying K+ channel (Kir 4.1) and Aquaporin-4 (AQP4) at the astrocytic microdomain. Here, we take advantage of the properties of differentiated primary astrocytes in vitro to provide an insight into the mechanism underpinning astrocytic cell volume regulation and its correlation with the expression and function of AQP4, Transient Receptor Potential Vanilloid 4(TRPV4), and Volume Regulated Anion Channel (VRAC). METHODS: The calcein quenching method was used to study water transport and cell volume regulation. Calcium imaging and electrophysiology (patch-clamp) were used for functional analyses of calcium dynamics and chloride currents. Western blot and immunofluorescence were used to analyse the expression and localization of the channel proteins of interest. RESULTS: We found that the increase in water permeability, previously observed in differentiated astrocytes, occurs simultaneously with more efficient regulatory volume increase and regulatory volume decrease. Accordingly, the magnitude of the hypotonic induced intracellular calcium response, typically mediated by TRPV4, as well as the hypotonic induced VRAC current, was almost twice as high in differentiated astrocytes. Interestingly, while we confirmed increased AQP4 expression in the membrane of differentiated astrocytes, the expression of the channels TRPV4 and Leucine-Rich Repeats-Containing 8-A (LRRC8-A) were comparable between differentiated and non-differentiated astrocytes. CONCLUSION: The reported results indicate that AQP4 up-regulation observed in differentiated astrocytes might promote higher sensitivity of the cell to osmotic changes, resulting in increased magnitude of calcium signaling and faster kinetics of the RVD and RVI processes. The implications for cell physiology and the mechanisms underlying astrocytic interaction with nanostructured interfaces are discussed.


Assuntos
Astrócitos/citologia , Tamanho Celular , Animais , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Células Cultivadas , Permeabilidade , Ratos Wistar , Canais de Cátion TRPV/metabolismo , Água/metabolismo
7.
Biosci Rep ; 41(12)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34750607

RESUMO

BACKGROUND: Cell-surface proteins have been widely used as diagnostic and prognostic markers in cancer research and as targets for the development of anticancer agents. So far, very few attempts have been made to characterize the surfaceome of patients with breast cancer, particularly in relation with the current molecular breast cancer (BRCA) classification. In this view, we developed a new computational method to infer cell-surface protein activities from transcriptomics data, termed 'SURFACER'. METHODS: Gene expression data from GTEx were used to build a normal breast network model as input to infer differential cell-surface proteins activity in BRCA tissue samples retrieved from TCGA versus normal samples. Data were stratified according to the PAM50 transcriptional subtypes (Luminal A, Luminal B, HER2 and Basal), while unsupervised clustering techniques were applied to define BRCA subtypes according to cell-surface proteins activity. RESULTS: Our approach led to the identification of 213 PAM50 subtypes-specific deregulated surface genes and the definition of five BRCA subtypes, whose prognostic value was assessed by survival analysis, identifying a cell-surface activity configuration at increased risk. The value of the SURFACER method in BRCA genotyping was tested by evaluating the performance of 11 different machine learning classification algorithms. CONCLUSIONS: BRCA patients can be stratified into five surface activity-specific groups having the potential to identify subtype-specific actionable targets to design tailored targeted therapies or for diagnostic purposes. SURFACER-defined subtypes show also a prognostic value, identifying surface-activity profiles at higher risk.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Aprendizado de Máquina , Transcriptoma , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Valor Preditivo dos Testes , Prognóstico , Mapas de Interação de Proteínas , Transdução de Sinais
8.
Brain Res Bull ; 175: 158-167, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339779

RESUMO

Fabry disease (FD) is an X-linked inherited disorder characterized by glycosphingolipid accumulation due to deficiency of α-galactosidase A (α-Gal A) enzyme. Chronic pain and mood disorders frequently coexist in FD clinical setting, however underlying pathophysiologic mechanisms are still unclear. Here we investigated the mechanical and thermal sensitivity in α-Gal A (-/0) hemizygous male and the α-Gal A (-/-) homozygous female mice. We also characterized the gene expression of dynorphinergic, nociceptinergic and CRFergic systems, known to be involved in pain control and mood disorders, in the prefrontal cortex, amygdala and thalamus of α-Gal A (-/0) hemizygous male and the α-Gal A (-/-) homozygous female mice. Moreover, KOP receptor protein levels were evaluated in the same areas. Fabry knock-out male, but not female, mice displayed a decreased pain threshold in both mechanical and thermal tests compared to their wild type littermates. In the amygdala and prefrontal cortex, we observed a decrease of pDYN mRNA levels in males, whereas an increase was assessed in females, thus suggesting sex-related dysregulation of stress coping and pain mechanisms. Elevated mRNA levels for pDYN/KOP and CRF/CRFR1 systems were observed in male and female thalamus, a critical crossroad for both painful signals and cognitive/emotional processes. KOP receptor protein level changes assessed in the investigated areas, appeared mostly in agreement with KOP gene expression alterations. Our data suggest that α-Gal A enzyme deficiency in male and female mice is associated with distinct neuropeptide gene and protein expression dysregulations of investigated systems, possibly related to the neuroplasticity underlying the neurological features of FD.


Assuntos
Comportamento Animal , Doença de Fabry/psicologia , Neuropeptídeos/metabolismo , Nociceptividade , Animais , Química Encefálica/genética , Hormônio Liberador da Corticotropina , Dinorfinas/genética , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Nociceptores , Limiar da Dor , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Opioides kappa/genética , Caracteres Sexuais
9.
Adv Biosyst ; 4(4): e1900264, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32293156

RESUMO

The correct human brain function is dependent on the activity of non-neuronal cells called astrocytes. The bioelectrical properties of astrocytes in vitro do not closely resemble those displayed in vivo and the former are incapable of generating action potential; thus, reliable approaches in vitro for noninvasive electrophysiological recording of astrocytes remain challenging for biomedical engineering. Here it is found that primary astrocytes grown on a device formed by a forest of randomly oriented gold coated-silicon nanowires, resembling the complex structural and functional phenotype expressed by astrocytes in vivo. The device enables noninvasive extracellular recording of the slow-frequency oscillations generated by differentiated astrocytes, while flat electrodes failed on recording signals from undifferentiated cells. Pathophysiological concentrations of extracellular potassium, occurring during epilepsy and spreading depression, modulate the power of slow oscillations generated by astrocytes. A reliable approach to study the role of astrocytes function in brain physiology and pathologies is presented.


Assuntos
Potenciais de Ação , Astrócitos/metabolismo , Relógios Biológicos , Diferenciação Celular , Nanofios/química , Silício/química , Animais , Humanos , Cultura Primária de Células , Ratos , Ratos Wistar
10.
FASEB J ; 34(5): 6539-6553, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32202681

RESUMO

Astrocytes are non-neuronal cells that govern the homeostatic regulation of the brain through ions and water transport, and Ca2+ -mediated signaling. As they are tightly integrated into neural networks, label-free tools that can modulate cell function are needed to evaluate the role of astrocytes in brain physiology and dysfunction. Using live-cell fluorescence imaging, pharmacology, electrophysiology, and genetic manipulation, we show that pulsed infrared light can modulate astrocyte function through changes in intracellular Ca2+ and water dynamics, providing unique mechanistic insight into the effect of pulsed infrared laser light on astroglial cells. Water transport is activated and, IP3 R, TRPA1, TRPV4, and Aquaporin-4 are all involved in shaping the dynamics of infrared pulse-evoked intracellular calcium signal. These results demonstrate that astrocyte function can be modulated with infrared light. We expect that targeted control over calcium dynamics and water transport will help to study the crucial role of astrocytes in edema, ischemia, glioma progression, stroke, and epilepsy.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Raios Infravermelhos , Água/metabolismo , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/citologia , Astrócitos/efeitos da radiação , Transporte Biológico , Células Cultivadas , Homeostase , Ratos , Transdução de Sinais , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
11.
FASEB J ; 33(1): 101-113, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29957062

RESUMO

Consolidated evidence indicates that astroglial cells are critical in the homeostatic regulation of cellular volume by means of ion channels and aquaporin-4. Volume-regulated anion channel (VRAC) is the chloride channel that is activated upon cell swelling and critically contributes to cell volume regulation in astrocytes. The molecular identity of VRAC has been recently defined, revealing that it belongs to the leucine-rich repeat-containing 8 (LRRC8) protein family. However, there is a lack of evidence demonstrating that LRRC8A underpins VRAC currents in astrocyte. Nonetheless, direct evidence of the role of LRRC8A in astrocytic regulatory volume decrease remains to be proved. Here, we aim to bridge this gap in knowledge by combining RNA interference specific for LRRC8A with patch-clamp analyses and a water-permeability assay. We demonstrated that LRRC8A molecular expression is essential for swelling-activated chloride current via VRAC in primary-cultured cortical astrocytes. The knockdown of LRRC8A with a specific short interference RNA abolished the recovery of the cell volume after swelling induced by hypotonic challenge. In addition, immunoblotting, immunofluorescence, confocal imaging, and immunogold electron microscopy demonstrated that LRRC8A is expressed in the plasma membrane of primary cortical astrocytes and in situ in astrocytes at the perivascular interface with endothelial cells. Collectively, our results suggest that LRRC8A is an essential subunit of VRAC and a key factor for astroglial volume homeostasis.-Formaggio, F., Saracino, E., Mola, M. G., Rao, S. B., Amiry-Moghaddam, M., Muccini, M., Zamboni, R., Nicchia, G. P., Caprini, M., Benfenati, V. LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes.


Assuntos
Astrócitos/citologia , Astrócitos/metabolismo , Membrana Celular/metabolismo , Tamanho Celular , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Proteínas/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Transporte de Íons , Proteínas de Repetições Ricas em Leucina , Camundongos , Camundongos Endogâmicos C57BL , Ratos
12.
Adv Healthc Mater ; 8(3): e1801139, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30565894

RESUMO

Organic bioelectronics have a huge potential to generate interfaces and devices for the study of brain functions and for the therapy of brain pathologies. In this context, increasing efforts are needed to develop technologies for monitoring and stimulation of nonexcitable brain cells, called astrocytes. Astroglial calcium signaling plays, indeed, a pivotal role in the physiology and pathophysiology of the brain. Here, the use of transparent organic cell stimulating and sensing transistor (O-CST) architecture, fabricated with N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13), to elicit and monitor intracellular calcium concentration ([Ca2+ ]i ) in primary rat neocortical astrocytes is demonstrated. The transparency of O-CST allows performing calcium imaging experiments, showing that extracellular electrical stimulation of astrocytes induces a drastic increase in [Ca2+ ]i . Pharmacological studies indicate that transient receptor potential (TRP) superfamily are critical mediators of the [Ca2+ ]i increase. Experimental and computational analyses show that [Ca2+ ]i response is enabled by the O-CST device architecture. Noteworthy, the extracellular field application induces a slight but significant increase in the cell volume. Collectively, it is shown that the O-CST is capable of selectively evoking astrocytes [Ca2+ ]i , paving the way to the development of organic bioelectronic devices as glial interfaces to excite and control physiology of non-neuronal brain cells.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Transistores Eletrônicos , Animais , Astrócitos/citologia , Encéfalo/citologia , Células Cultivadas , Estimulação Elétrica , Ratos , Ratos Sprague-Dawley
13.
Biochem Pharmacol ; 140: 89-104, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28583844

RESUMO

Glioblastoma is among the most aggressive brain tumors and has an exceedingly poor prognosis. Recently, the importance of the tumor microenvironment in glioblastoma cell growth and progression has been emphasized. Toll-like receptor 4 (TLR4) recognizes bacterial lipopolysaccharide (LPS) and endogenous ligands originating from dying cells or the extracellular matrix involved in host defense and in inflammation. G-protein coupled receptors (GPCRs) have gained interest in anti-tumor drug discovery due to the role that they directly or indirectly play by transactivating other receptors, causing cell migration and proliferation. A proteomic analysis showed that the nociceptin receptor (NOPr) is among the GPCRs significantly expressed in glioblastoma cells, including U87 cells. We describe a novel role of the peptide nociceptin (N/OFQ), the endogenous ligand of the NOPr that counteracts cell migration, proliferation and increase in IL-1ß mRNA elicited by LPS via TLR4 in U87 glioblastoma cells. Signaling pathways through which N/OFQ inhibits LPS-mediated cell migration and elevation of [Ca2+]i require ß-arrestin 2 and are sensitive to TNFR-associated factor 6, c-Src and protein kinase C (PKC). LPS-induced cell proliferation and increase in IL-1ß mRNA are counteracted by N/OFQ via ß-arrestin 2, PKC and extracellular signal-regulated kinase 1/2; furthermore, the contributions of the transcription factors NF-kB and AP-1 were investigated. Independent of LPS, N/OFQ induces a significant increase in cell apoptosis. Contrary to what was observed in other cell models, a prolonged exposure to this endotoxin did not promote any tolerance of the cellular effects above described, including NOPr down-regulation while N/OFQ loses its inhibitory role.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Glioblastoma/tratamento farmacológico , Peptídeos Opioides/farmacologia , Fator 6 Associado a Receptor de TNF/agonistas , Receptor 4 Toll-Like/antagonistas & inibidores , beta-Arrestina 2/agonistas , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Astrócitos/metabolismo , Astrócitos/patologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Interleucina-1beta/agonistas , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Interferência de RNA , Receptores Opioides/agonistas , Receptores Opioides/genética , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , beta-Arrestina 2/antagonistas & inibidores , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , Receptor de Nociceptina , Nociceptina
14.
Sci Rep ; 6: 31226, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27503424

RESUMO

Potassium channels and aquaporins expressed by astrocytes are key players in the maintenance of cerebral homeostasis and in brain pathophysiologies. One major challenge in the study of astrocyte membrane channels in vitro, is that their expression pattern does not resemble the one observed in vivo. Nanostructured interfaces represent a significant resource to control the cellular behaviour and functionalities at micro and nanoscale as well as to generate novel and more reliable models to study astrocytes in vitro. However, the potential of nanotechnologies in the manipulation of astrocytes ion channels and aquaporins has never been previously reported. Hydrotalcite-like compounds (HTlc) are layered materials with increasing potential as biocompatible nanoscale interface. Here, we evaluate the effect of the interaction of HTlc nanoparticles films with primary rat neocortical astrocytes. We show that HTlc films are biocompatible and do not promote gliotic reaction, while favouring astrocytes differentiation by induction of F-actin fibre alignment and vinculin polarization. Western Blot, Immunofluorescence and patch-clamp revealed that differentiation was accompanied by molecular and functional up-regulation of both inward rectifying potassium channel Kir 4.1 and aquaporin 4, AQP4. The reported results pave the way to engineering novel in vitro models to study astrocytes in a in vivo like condition.


Assuntos
Astrócitos/citologia , Materiais Biocompatíveis/química , Nanoestruturas , Actinas/metabolismo , Hidróxido de Alumínio/química , Animais , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular , Células Cultivadas , Citoesqueleto/metabolismo , Gliose/metabolismo , Hidróxido de Magnésio/química , Teste de Materiais , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Vinculina/metabolismo
15.
Biopolymers ; 105(5): 287-99, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26756916

RESUMO

The use of doped silk fibroin (SF) films and substrates from Bombyx mori cocoons for green nanotechnology and biomedical applications has been recently highlighted. Cocoons from coloured strains of B. mori, such as Golden-Yellow, contain high levels of pigments that could have a huge potential for the fabrication of SF based biomaterials targeted to photonics, optoelectronics and neuroregenerative medicine. However, the features of extracted and regenerated SF from cocoons of B. mori Golden-Yellow strain have never been reported. Here we provide a chemophysical characterization of regenerated silk fibroin (RSF) fibers, solution, and films obtained from cocoons of a Golden-Yellow strain of B. mori, by SEM, (1) H-NMR, HPLC, FT-IR, Raman and UV-Vis spectroscopy. We found that the extracted solution and films from B. mori Golden-Yellow fibroin displayed typical Raman spectroscopic and optical features of carotenoids. HPLC-analyses revealed that lutein was the carotenoid contained in the fiber and RSF biopolymer from yellow cocoons. Notably, primary neurons cultured on yellow SF displayed a threefold higher neurite length than those grown of white SF films. The results we report pave the way to expand the potential use of yellow SF in the field of neuroregenerative medicine and provide green chemistry approaches in biomedicine.


Assuntos
Axônios , Materiais Biocompatíveis , Fibroínas/química , Luteína/química , Neurônios/citologia , Seda/química , Animais , Bombyx , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...