Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1243528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869014

RESUMO

Intestinal epithelial homeostasis is maintained by intrinsic and extrinsic signals. The extrinsic signals include those provided by mesenchymal cell populations that surround intestinal crypts and is further facilitated by the extracellular matrix (ECM), which is modulated by proteases such as matrix metalloproteinases (MMPs). Extrinsic signals ensure an appropriate balance between intestinal epithelial proliferation and differentiation. This study explores the role of MMP17, which is preferentially expressed by smooth muscle cells in the intestine, in intestinal homeostasis and during immunity to infection. Mice lacking MMP17 expressed high levels of goblet-cell associated genes and proteins, such as CLCA1 and RELM-ß, which are normally associated with immune responses to infection. Nevertheless, Mmp17 KO mice did not have altered resistance during a bacterial Citrobacter rodentium infection. However, when challenged with a low dose of the helminth Trichuris muris, Mmp17 KO mice had increased resistance, without a clear role for an altered immune response during infection. Mechanistically, we did not find changes in traditional modulators of goblet cell effectors such as the NOTCH pathway or specific cytokines. We found MMP17 expression in smooth muscle cells as well as lamina propria cells such as macrophages. Together, our data suggest that MMP17 extrinsically alters goblet cell maturation which is sufficient to alter clearance in a helminth infection model.


Assuntos
Metaloproteinase 17 da Matriz , Tricuríase , Animais , Camundongos , Colo , Células Caliciformes/metabolismo , Metaloproteinase 17 da Matriz/metabolismo , Infecção Persistente , Trichuris
2.
Semin Immunol ; 53: 101525, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34785137

RESUMO

A wealth of research is dedicated to understanding how resistance against parasites is conferred and how parasite-driven pathology is regulated. This research is in part driven by the hope to better treatments for parasitic diseases of humans and livestock, and in part by immunologists who use parasitic infections as biomedical tools to evoke physiological immune responses. Much of the current mechanistic knowledge has been discovered in laboratory studies using model organisms, especially the laboratory mouse. However, wildlife are also hosts to a range of parasites. Through the study of host-parasite interactions in these non-laboratory systems we can gain a deeper understanding of parasite immunology in a more natural, complex environment. With a focus on helminth parasites, we here explore the insights gained into parasite-induced immune responses through (for immunologists) non-conventional experimental systems, and how current core findings from laboratory studies are reflected in these more natural conditions. The quality of the immune response is undoubtedly a central player in susceptibility versus resistance, as many laboratory studies have shown. Yet, in the wild, parasite infections tend to be chronic diseases. Whilst reading our review, we encourage the reader to consider the following questions which may (only) be answered by studying naturally occurring parasites in the wild: a) what type of immune responses are mounted against parasites in different hosts in the wild, and how do they vary within an individual over time, between individuals of the same species and between species? b) can we use wild or semi-wild study systems to understand the evolutionary drivers for tolerance versus resistance towards a parasite? c) what determines the ability of the host to cope with an infection and is there a link with the type of immune response mounted? d) can we modulate environmental factors to manipulate a wild animal's immune response to parasitic infections, with translation potential for humans, wildlife, and livestock? and e) in context of this special issue, what lessons for Type 2 immunity can we glean from studying animals in their natural environments? Further, we aim to integrate some of the knowledge gained in semi-wild and wild settings with knowledge gained from traditional laboratory-based research, and to raise awareness for the opportunities (and challenges) that come with integrating a multitude of naturally-occurring variables into immunoparasitological research.


Assuntos
Interações Hospedeiro-Parasita , Parasitos , Animais , Animais Selvagens/parasitologia , Evolução Biológica , Humanos , Camundongos
3.
PLoS Pathog ; 17(7): e1009768, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34329367

RESUMO

The intestinal nematode parasite Trichuris muris dwells in the caecum and proximal colon driving an acute resolving intestinal inflammation dominated by the presence of macrophages. Notably, these macrophages are characterised by their expression of RELMα during the resolution phase of the infection. The RELMα+ macrophage phenotype associates with the presence of alternatively activated macrophages and work in other model systems has demonstrated that the balance of classically and alternatively activated macrophages is critically important in enabling the resolution of inflammation. Moreover, in the context of type 2 immunity, RELMα+ alternatively activated macrophages are associated with the activation of macrophages via the IL4Rα. Despite a breadth of inflammatory pathologies associated with the large intestine, including those that accompany parasitic infection, it is not known how colonic macrophages are activated towards an alternatively activated phenotype. Here, we address this important knowledge gap by using Trichuris muris infection, in combination with transgenic mice (IL4Rαfl/fl.CX3CR1Cre) and IL4Rα-deficient/wild-type mixed bone marrow chimaeras. We make the unexpected finding that education of colonic macrophages towards a RELMα+, alternatively activated macrophage phenotype during T. muris infection does not require IL4Rα expression on macrophages. Further, this independence is maintained even when the mice are treated with an anti-IFNγ antibody during infection to create a strongly polarised Th2 environment. In contrast to RELMα, PD-L2 expression on macrophages post infection was dependent on IL4Rα signalling in the macrophages. These novel data sets are important, revealing a surprising cell-intrinsic IL4R alpha independence of the colonic RELMα+ alternatively activated macrophage during Trichuris muris infection.


Assuntos
Colo/imunologia , Colo/parasitologia , Enteropatias Parasitárias/imunologia , Macrófagos/imunologia , Tricuríase/imunologia , Animais , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Subunidade alfa de Receptor de Interleucina-4/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Trichuris/imunologia
4.
Parasitology ; : 1-13, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33952360

RESUMO

Trichuris spp. (whipworms) are intestinal nematode parasites which cause chronic infections associated with significant morbidities. Trichuris muris in a mouse is the most well studied of the whipworms and research on this species has been approached from a number of different disciplines. Research on T. muris in a laboratory mouse has provided vital insights into the host­parasite interaction through analyses of the immune responses to infection, identifying factors underpinning host susceptibility and resistance. Laboratory studies have also informed strategies for disease control through anthelmintics and vaccine research. On the contrary, research on naturally occurring infections with Trichuris spp. allows the analysis of the host­parasite co-evolutionary relationships and parasite genetic diversity. Furthermore, ecological studies utilizing Trichuris have aided our knowledge of the intricate relationships amongst parasite, host and environment. More recently, studies in wild and semi-wild settings have combined the strengths of the model organism of the house mouse with the complexities of context-dependent physiological responses to infection. This review celebrates the extraordinarily broad range of beneficiaries of whipworm research, from immunologists and parasitologists, through epidemiologists, ecologists and evolutionary biologists to the veterinary and medical communities.

5.
ACS Infect Dis ; 7(5): 1260-1274, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33797218

RESUMO

Nine hundred million people are infected with the soil-transmitted helminths Ascaris lumbricoides (roundworm), hookworm, and Trichuris trichiura (whipworm). However, low single-dose cure rates of the benzimidazole drugs, the mainstay of preventative chemotherapy for whipworm, together with parasite drug resistance, mean that current approaches may not be able to eliminate morbidity from trichuriasis. We are seeking to develop new anthelmintic drugs specifically with activity against whipworm as a priority and previously identified a hit series of dihydrobenzoxazepinone (DHB) compounds that block motility of ex vivo Trichuris muris. Here, we report a systematic investigation of the structure-activity relationship of the anthelmintic activity of DHB compounds. We synthesized 47 analogues, which allowed us to define features of the molecules essential for anthelmintic action as well as broadening the chemotype by identification of dihydrobenzoquinolinones (DBQs) with anthelmintic activity. We investigated the activity of these compounds against other parasitic nematodes, identifying DHB compounds with activity against Brugia malayi and Heligmosomoides polygyrus. We also demonstrated activity of DHB compounds against the trematode Schistosoma mansoni, a parasite that causes schistosomiasis. These results demonstrate the potential of DHB and DBQ compounds for further development as broad-spectrum anthelmintics.


Assuntos
Anti-Helmínticos , Brugia Malayi , Nematospiroides dubius , Parasitos , Animais , Anti-Helmínticos/farmacologia , Humanos , Schistosoma mansoni , Trichuris
6.
J Mol Med (Berl) ; 98(9): 1301-1317, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32778925

RESUMO

The IgMi mouse has normal B cell development; its B cells express an IgM B cell receptor but cannot class switch or secrete antibody. Thus, the IgMi mouse offers a model system by which to dissect out antibody-dependent and antibody-independent B cell function. Here, we provide the first detailed characterisation of the IgMi mouse post-Trichuris muris (T. muris) infection, describing expulsion phenotype, cytokine production, gut pathology and changes in T regulatory cells, T follicular helper cells and germinal centre B cells, in addition to RNA sequencing (RNA seq) analyses of wild-type littermates (WT) and mutant B cells prior to and post infection. IgMi mice were susceptible to a high-dose infection, with reduced Th2 cytokines and elevated B cell-derived IL-10 in mesenteric lymph nodes (MLN) compared to controls. A low-dose infection regime revealed IgMi mice to have significantly more apoptotic cells in the gut compared to WT mice, but no change in intestinal inflammation. IL-10 levels were again elevated. Collectively, this study showcases the potential of the IgMi mouse as a tool for understanding B cell biology and suggests that the B cell plays both antibody-dependent and antibody-independent roles post high- and low-dose T. muris infection. KEY MESSAGES: During a high-dose T. muris infection, B cells are important in maintaining the Th1/Th2 balance in the MLN through an antibody-independent mechanism. High levels of IL-10 in the MLN early post-infection, and the presence of IL-10-producing B cells, correlates with susceptibility to T. muris infection. B cells maintain gut homeostasis during chronic T. muris infection via an antibody-dependent mechanism.


Assuntos
Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Interações Hospedeiro-Parasita/imunologia , Tricuríase/imunologia , Tricuríase/parasitologia , Trichuris/imunologia , Animais , Apoptose , Citocinas/biossíntese , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Feminino , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Knockout , Carga Parasitária
7.
Beilstein J Org Chem ; 16: 1203-1224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550933

RESUMO

Helminths, including cestodes, nematodes and trematodes, are a huge global health burden, infecting hundreds of millions of people. In many cases, existing drugs such as benzimidazoles, diethylcarbamazine, ivermectin and praziquantel are insufficiently efficacious, contraindicated in some populations, or at risk of the development of resistance, thereby impeding progress towards World Health Organization goals to control or eliminate these neglected tropical diseases. However, there has been limited recent progress in developing new drugs for these diseases due to lack of commercial attractiveness, leading to the introduction of novel, more efficient models for drug innovation that attempt to reduce the cost of research and development. Open science aims to achieve this by encouraging collaboration and the sharing of data and resources between organisations. In this review we discuss how open science has been applied to anthelmintic drug discovery. Open resources, including genomic information from many parasites, are enabling the identification of targets for new antiparasitic agents. Phenotypic screening remains important, and there has been much progress in open-source systems for compound screening with parasites, including motility assays but also high content assays with more detailed investigation of helminth physiology. Distributed open science compound screening programs, such as the Medicines for Malaria Venture Pathogen Box, have been successful at facilitating screening in diverse assays against many different parasite pathogens and models. Of the compounds identified so far in these screens, tolfenpyrad, a repurposed insecticide, shows significant promise and there has been much progress in creating more potent and selective derivatives. This work exemplifies how open science approaches can catalyse drug discovery against neglected diseases.

8.
PLoS Pathog ; 16(3): e1008243, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203551

RESUMO

Trichuris trichiura is a parasite that infects 500 million people worldwide, leading to colitis, growth retardation and Trichuris dysentery syndrome. There are no licensed vaccines available to prevent Trichuris infection and current treatments are of limited efficacy. Trichuris infections are linked to poverty, reducing children's educational performance and the economic productivity of adults. We employed a systematic, multi-stage process to identify a candidate vaccine against trichuriasis based on the incorporation of selected T-cell epitopes into virus-like particles. We conducted a systematic review to identify the most appropriate in silico prediction tools to predict histocompatibility complex class II (MHC-II) molecule T-cell epitopes. These tools were used to identify candidate MHC-II epitopes from predicted ORFs in the Trichuris genome, selected using inclusion and exclusion criteria. Selected epitopes were incorporated into Hepatitis B core antigen virus-like particles (VLPs). Bone marrow-derived dendritic cells and bone marrow-derived macrophages responded in vitro to VLPs irrespective of whether the VLP also included T-cell epitopes. The VLPs were internalized and co-localized in the antigen presenting cell lysosomes. Upon challenge infection, mice vaccinated with the VLPs+T-cell epitopes showed a significantly reduced worm burden, and mounted Trichuris-specific IgM and IgG2c antibody responses. The protection of mice by VLPs+T-cell epitopes was characterised by the production of mesenteric lymph node (MLN)-derived Th2 cytokines and goblet cell hyperplasia. Collectively our data establishes that a combination of in silico genome-based CD4+ T-cell epitope prediction, combined with VLP delivery, offers a promising pipeline for the development of an effective, safe and affordable helminth vaccine.


Assuntos
Epitopos de Linfócito T/imunologia , Tricuríase/prevenção & controle , Trichuris/imunologia , Vacinas/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Simulação por Computador , Células Dendríticas/imunologia , Epitopos de Linfócito T/administração & dosagem , Epitopos de Linfócito T/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunogenicidade da Vacina , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tricuríase/imunologia , Tricuríase/parasitologia , Trichuris/genética , Vacinas/administração & dosagem , Vacinas/genética
9.
Expert Rev Gastroenterol Hepatol ; 12(10): 997-1006, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30113218

RESUMO

INTRODUCTION: Macrophages represent a highly heterogeneous and plastic cell type found in most tissues of the body; the intestine is home to enormous numbers of these cells. Considerable interest surrounds the 'M2 macrophage,' as it is able to control and regulate inflammation, while promoting tissue repair. Areas covered: As potent inducers of M2 macrophages, intestinal helminths and helminth-derived products are ideal candidates for small molecule drug design to drive M2 macrophage polarization. Several gastrointestinal helminths have been found to cause M2 macrophage-inducing infections. This review covers current knowledge of helminth products and their impact on macrophage polarization, which may in the future lead to new therapeutic strategies. A literature search was performed using the following search terms in PubMed: M2 macrophage, alternative activation, helminth products, helminth ES, helminth therapy, nanoparticle, intestinal macrophages. Other studies were selected by using references from articles identified through our original literature search. Expert commentary: While the immunomodulatory potential of helminth products is well established, we have yet to fully characterize many components of the intestinal helminth product library. Current work aims to identify the protein motifs responsible for modulation of macrophages and other components of the immune system.


Assuntos
Antígenos de Helmintos/uso terapêutico , Gastroenteropatias/terapia , Helmintíase/imunologia , Macrófagos/imunologia , Terapia com Helmintos , Animais , Doença Celíaca/terapia , Helmintíase/metabolismo , Humanos , Inflamação/imunologia , Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia
10.
PLoS Negl Trop Dis ; 12(7): e0006487, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995893

RESUMO

The human whipworm Trichuris trichiura is a parasite that infects around 500 million people globally, with consequences including damage to physical growth and educational performance. Current drugs such as mebendazole have a notable lack of efficacy against whipworm, compared to other soil-transmitted helminths. Mass drug administration programs are therefore unlikely to achieve eradication and new treatments for trichuriasis are desperately needed. All current drug control strategies focus on post-infection eradication, targeting the parasite in vivo. Here we propose developing novel anthelmintics which target the egg stage of the parasite in the soil as an adjunct environmental strategy. As evidence in support of such an approach we describe the actions of a new class of anthelmintic compounds, the 2,4-diaminothieno[3,2-d]pyrimidines (DATPs). This compound class has found broad utility in medicinal chemistry, but has not previously been described as having anthelmintic activity. Importantly, these compounds show efficacy against not only the adult parasite, but also both the embryonated and unembryonated egg stages and thereby may enable a break in the parasite lifecycle.


Assuntos
Anti-Helmínticos/administração & dosagem , Óvulo/efeitos dos fármacos , Pirimidinas/administração & dosagem , Tricuríase/tratamento farmacológico , Trichuris/efeitos dos fármacos , Animais , Anti-Helmínticos/química , Feminino , Humanos , Masculino , Camundongos , Óvulo/crescimento & desenvolvimento , Contagem de Ovos de Parasitas , Pirimidinas/química , Tricuríase/parasitologia , Trichuris/crescimento & desenvolvimento
11.
Parasite Immunol ; 40(8): e12566, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29920694

RESUMO

Trichuris muris is a natural mouse helminth pathogen which establishes infection specifically in the caecum and proximal colon. The rapid expulsion of T. muris in resistant mouse strains is associated with the induction of a protective T helper cell type 2 (Th2)-polarized immune response. Susceptible mouse strains, in contrast, mount an inappropriate Th1 response to T. muris infection. Expression of the chemokine CXCL13 by stromal follicular dendritic cells attracts CXCR5-expressing cells towards the B-cell follicles. Previous studies using a complex in vivo depletion model have suggested that CXCR5-expressing conventional dendritic cells (cDC) help regulate the induction of Th2-polarized responses. Here, transgenic mice with CXCR5 deficiency specifically restricted to CD11c+ cells were used to determine whether the specific absence CXCR5 on CD11c+ cells such as cDC would influence susceptibility to oral T. muris infection by affecting the Th1/Th2 balance. We show that in contrast to control mice, those which lacked CXCR5 expression on CD11c+ cells failed to clear T. muris infection and developed cytokine and antibody responses that suggested a disturbed Th1/Th2 balance with enhanced IFN-γ expression. These data suggest an important role of CXCR5-expressing CD11c+ cells such as cDC in immunity to oral T. muris infection.


Assuntos
Antígeno CD11c/análise , Receptores CXCR5/análise , Tricuríase/imunologia , Trichuris/imunologia , Administração Oral , Animais , Formação de Anticorpos , Linfócitos B , Citocinas/análise , Células Dendríticas/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organismos Livres de Patógenos Específicos , Células Th2/imunologia , Tricuríase/parasitologia
12.
Sci Rep ; 8(1): 3782, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491349

RESUMO

Resistance to the intestinal parasitic helminth Trichuris muris requires T-helper 2 (TH2) cellular and associated IgG1 responses, with expulsion typically taking up to 4 weeks in mice. Here, we show that the time-of-day of the initial infection affects efficiency of worm expulsion, with strong TH2 bias and early expulsion in morning-infected mice. Conversely, mice infected at the start of the night show delayed resistance to infection, and this is associated with feeding-driven metabolic cues, such that feeding restriction to the day-time in normally nocturnal-feeding mice disrupts parasitic expulsion kinetics. We deleted the circadian regulator BMAL1 in antigen-presenting dendritic cells (DCs) in vivo and found a loss of time-of-day dependency of helminth expulsion. RNAseq analyses revealed that IL-12 responses to worm antigen by circadian-synchronised DCs were dependent on BMAL1. Therefore, we find that circadian machinery in DCs contributes to the TH1/TH2 balance, and that environmental, or genetic perturbation of the DC clock results in altered parasite expulsion kinetics.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Ritmo Circadiano , Células Dendríticas/imunologia , Linfonodos/imunologia , Células Th2/imunologia , Tricuríase/imunologia , Trichuris/patogenicidade , Animais , Células Cultivadas , Células Dendríticas/parasitologia , Linfonodos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/imunologia , Linfócitos T/parasitologia , Células Th2/parasitologia , Tricuríase/parasitologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-29223747

RESUMO

Parasitic nematodes infect hundreds of millions of people and farmed livestock. Further, plant parasitic nematodes result in major crop damage. The pipeline of therapeutic compounds is limited and parasite resistance to the existing anthelmintic compounds is a global threat. We have developed an INVertebrate Automated Phenotyping Platform (INVAPP) for high-throughput, plate-based chemical screening, and an algorithm (Paragon) which allows screening for compounds that have an effect on motility and development of parasitic worms. We have validated its utility by determining the efficacy of a panel of known anthelmintics against model and parasitic nematodes: Caenorhabditis elegans, Haemonchus contortus, Teladorsagia circumcincta, and Trichuris muris. We then applied the system to screen the Pathogen Box chemical library in a blinded fashion and identified compounds already known to have anthelmintic or anti-parasitic activity, including tolfenpyrad, auranofin, and mebendazole; and 14 compounds previously undescribed as anthelmintics, including benzoxaborole and isoxazole chemotypes. This system offers an effective, high-throughput system for the discovery of novel anthelmintics.


Assuntos
Anti-Helmínticos/isolamento & purificação , Automação Laboratorial/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Nematoides/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/análise , Algoritmos , Animais , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Automação Laboratorial/métodos , Caenorhabditis elegans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Haemonchus/efeitos dos fármacos , Infecções por Nematoides/tratamento farmacológico , Infecções por Nematoides/parasitologia , Fenótipo
14.
Infect Immun ; 85(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28874445

RESUMO

Experimental cerebral malaria (ECM) is a gamma interferon (IFN-γ)-dependent syndrome. However, whether IFN-γ promotes ECM through direct and synergistic targeting of multiple cell populations or by acting primarily on a specific responsive cell type is currently unknown. Here, using a panel of cell- and compartment-specific IFN-γ receptor 2 (IFN-γR2)-deficient mice, we show that IFN-γ causes ECM by signaling within both the hematopoietic and nonhematopoietic compartments. Mechanistically, hematopoietic and nonhematopoietic compartment-specific IFN-γR signaling exerts additive effects in orchestrating intracerebral inflammation, leading to the development of ECM. Surprisingly, mice with specific deletion of IFN-γR2 expression on myeloid cells, T cells, or neurons were completely susceptible to terminal ECM. Utilizing a reductionist in vitro system, we show that synergistic IFN-γ and tumor necrosis factor (TNF) stimulation promotes strong activation of brain blood vessel endothelial cells. Combined, our data show that within the hematopoietic compartment, IFN-γ causes ECM by acting redundantly or by targeting non-T cell or non-myeloid cell populations. Within the nonhematopoietic compartment, brain endothelial cells, but not neurons, may be the major target of IFN-γ leading to ECM development. Collectively, our data provide information on how IFN-γ mediates the development of cerebral pathology during malaria infection.


Assuntos
Encéfalo/imunologia , Células Endoteliais/imunologia , Interferon gama/genética , Malária Cerebral/genética , Plasmodium berghei/patogenicidade , Receptores de Interferon/genética , Animais , Encéfalo/irrigação sanguínea , Encéfalo/parasitologia , Encéfalo/patologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Quimiocinas CXC/genética , Quimiocinas CXC/imunologia , Modelos Animais de Doenças , Células Endoteliais/parasitologia , Regulação da Expressão Gênica , Interferon gama/imunologia , Interleucinas/genética , Interleucinas/imunologia , Malária Cerebral/imunologia , Malária Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/parasitologia , Neurônios/imunologia , Neurônios/parasitologia , Plasmodium berghei/imunologia , Receptores de Interferon/deficiência , Receptores de Interferon/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/parasitologia
15.
J Neuroinflammation ; 14(1): 50, 2017 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-28284226

RESUMO

BACKGROUND: Infection is a recognised risk factor for Alzheimer's disease (AD) and can worsen symptoms in established disease. AD patients have higher rates of infection and are more likely to require hospital admissions due to infections than individuals without dementia. Infections have also been found to increase the risk of those over 84 years of age being diagnosed with dementia. However, few studies have investigated immune responses to infection in AD. METHODS: Here, we investigated the immune responses of the triple transgenic Alzheimer's disease (3xTg-AD) mouse model of AD to infection with the parasites Toxoplasma gondii and Trichuris muris. Cytometric bead array, histology, immunohistochemistry and immunofluorescence were used to evaluate immune responses and the effects on the brain of acute infection. RESULTS: 3xTg-AD mice, despite having comparable parasite loads, were more susceptible to infection with more severe morbidity. A worsened outcome to infection can be linked to an exaggerated immune response. 3xTg-AD mice had an increased pro-inflammatory response characterised by the production of pro-inflammatory mediators such as tumour necrosis TNF-α, IL-6, CCL5 and CXCL-1, as well as an increase in immune cell infiltration to the sites of infection. T cell responses to parasite antigen also showed elevated production of the pro-inflammatory cytokines TNF-α (10 fold) and IL-6 (twofold). We investigated whether 3xTg-AD mice had a propensity for a more Th1-dominated response using the T. muris worm infection and showed that akin to T. gondii, there was an enhanced pro-inflammatory response which was associated with retention of worms in the gut and associated pathology. Irrespective of whether the infection was one that could infect the brain or cause a local gut inflammation, 3xTg-AD mice had increased numbers of activated microglia during infection in both the cortex and the hippocampus. CONCLUSIONS: Our findings suggest that in AD, responses to infection are exaggerated outside of the CNS. Additionally, the results presented here indicate that both systemic and localised inflammation caused by an infection exacerbate neuroinflammation in AD.


Assuntos
Doença de Alzheimer/imunologia , Suscetibilidade a Doenças/imunologia , Predisposição Genética para Doença , Toxoplasmose/imunologia , Tricuríase/imunologia , Doença Aguda , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Suscetibilidade a Doenças/metabolismo , Predisposição Genética para Doença/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Toxoplasmose/genética , Toxoplasmose/metabolismo , Tricuríase/genética , Tricuríase/metabolismo
16.
Sci Rep ; 7: 44571, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303919

RESUMO

Obesity impairs the relaxant capacity of adipose tissue surrounding the vasculature (PVAT) and has been implicated in resultant obesity-related hypertension and impaired glucose intolerance. Resident immune cells are thought to regulate adipocyte activity. We investigated the role of eosinophils in mediating normal PVAT function. Healthy PVAT elicits an anti-contractile effect, which was lost in mice deficient in eosinophils, mimicking the obese phenotype, and was restored upon eosinophil reconstitution. Ex vivo studies demonstrated that the loss of PVAT function was due to reduced bioavailability of adiponectin and adipocyte-derived nitric oxide, which was restored after eosinophil reconstitution. Mechanistic studies demonstrated that adiponectin and nitric oxide are released after activation of adipocyte-expressed ß3 adrenoceptors by catecholamines, and identified eosinophils as a novel source of these mediators. We conclude that adipose tissue eosinophils play a key role in the regulation of normal PVAT anti-contractile function.


Assuntos
Tecido Adiposo/metabolismo , Eosinófilos/metabolismo , Hipertensão/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo/patologia , Animais , Aorta/metabolismo , Aorta/patologia , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Catecolaminas/metabolismo , Dieta Hiperlipídica , Humanos , Hipertensão/complicações , Hipertensão/patologia , Camundongos , Óxido Nítrico/metabolismo , Obesidade/complicações , Obesidade/patologia , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo
17.
PLoS Negl Trop Dis ; 11(2): e0005359, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28182663

RESUMO

Trichuris trichiura is a human parasitic whipworm infecting around 500 million people globally, damaging the physical growth and educational performance of those infected. Current drug treatment options are limited and lack efficacy against the worm, preventing an eradication programme. It is therefore important to develop new treatments for trichuriasis. Using Trichuris muris, an established model for T. trichiura, we screened a library of 480 novel drug-like small molecules for compounds causing paralysis of the ex vivo adult parasite. We identified a class of dihydrobenz[e][1,4]oxazepin-2(3H)-one compounds with anthelmintic activity against T. muris. Further screening of structurally related compounds and resynthesis of the most potent molecules led to the identification of 20 active dihydrobenzoxazepinones, a class of molecule not previously implicated in nematode control. The most active immobilise adult T. muris with EC50 values around 25-50µM, comparable to the existing anthelmintic levamisole. The best compounds from this chemotype show low cytotoxicity against murine gut epithelial cells, demonstrating selectivity for the parasite. Developing a novel oral pharmaceutical treatment for a neglected disease and deploying it via mass drug administration is challenging. Interestingly, the dihydrobenzoxazepinone OX02983 reduces the ability of embryonated T. muris eggs to establish infection in the mouse host in vivo. Complementing the potential development of dihydrobenzoxazepinones as an oral anthelmintic, this supports an alternative strategy of developing a therapeutic that acts in the environment, perhaps via a spray, to interrupt the parasite lifecycle. Together these results show that the dihydrobenzoxazepinones are a new class of anthelmintic, active against both egg and adult stages of Trichuris parasites. They demonstrate encouraging selectivity for the parasite, and importantly show considerable scope for further optimisation to improve potency and pharmacokinetic properties with the aim of developing a clinical agent.


Assuntos
Anti-Helmínticos/farmacologia , Locomoção/efeitos dos fármacos , Oxazepinas/farmacologia , Trichuris/efeitos dos fármacos , Trichuris/fisiologia , Animais , Anti-Helmínticos/química , Anti-Helmínticos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Camundongos , Oxazepinas/química , Oxazepinas/toxicidade , Tricuríase/prevenção & controle
18.
BMC Immunol ; 17(1): 12, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27245920

RESUMO

BACKGROUND: Eosinophils are innate immune cells present in the intestine during steady state conditions. An intestinal eosinophilia is a hallmark of many infections and an accumulation of eosinophils is also observed in the intestine during inflammatory disorders. Classically the function of eosinophils has been associated with tissue destruction, due to the release of cytotoxic granule contents. However, recent evidence has demonstrated that the eosinophil plays a more diverse role in the immune system than previously acknowledged, including shaping adaptive immune responses and providing plasma cell survival factors during the steady state. Importantly, it is known that there are regional differences in the underlying immunology of the small and large intestine, but whether there are differences in context of the intestinal eosinophil in the steady state or inflammation is not known. RESULTS: Our data demonstrates that there are fewer IgA(+) plasma cells in the small intestine of eosinophil-deficient ΔdblGATA-1 mice compared to eosinophil-sufficient wild-type mice, with the difference becoming significant post-infection with Toxoplasma gondii. Remarkably, and in complete contrast, the absence of eosinophils in the inflamed large intestine does not impact on IgA(+) cell numbers during steady state, and is associated with a significant increase in IgA(+) cells post-infection with Trichuris muris compared to wild-type mice. Thus, the intestinal eosinophil appears to be less important in sustaining the IgA(+) cell pool in the large intestine compared to the small intestine, and in fact, our data suggests eosinophils play an inhibitory role. The dichotomy in the influence of the eosinophil over small and large intestinal IgA(+) cells did not depend on differences in plasma cell growth factors, recruitment potential or proliferation within the different regions of the gastrointestinal tract (GIT). CONCLUSIONS: We demonstrate for the first time that there are regional differences in the requirement of eosinophils for maintaining IgA+ cells between the large and small intestine, which are more pronounced during inflammation. This is an important step towards further delineation of the enigmatic functions of gut-resident eosinophils.


Assuntos
Eosinófilos/imunologia , Inflamação/imunologia , Intestino Grosso/imunologia , Intestino Delgado/imunologia , Plasmócitos/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Tricuríase/imunologia , Trichuris/imunologia , Animais , Células Cultivadas , Microambiente Celular , Eosinófilos/microbiologia , Eosinófilos/parasitologia , Fator de Transcrição GATA1/genética , Imunoglobulina A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Plasmócitos/microbiologia , Plasmócitos/parasitologia
19.
Atherosclerosis ; 246: 325-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26828750

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is a chronic lipid-driven inflammatory disease of the arterial wall. Interferon gamma (IFNγ) is an important immunomodulatory cytokine and a known pro-atherosclerotic mediator. However, cell-specific targeting of IFNγ or its signaling in atherosclerosis development has not been studied yet. As macrophages are important IFNγ targets, we here addressed the involvement of myeloid IFNγ signaling in murine atherosclerosis. METHODS: Bone marrow was isolated from interferon gamma receptor 2 chain (IFNγR2) wildtype and myeloid IFNγR2 deficient mice and injected into lethally irradiated LDLR(-/-) mice. After recovery mice were put on a high fat diet for 10 weeks after which atherosclerotic lesion analysis was performed. In addition, the accompanying liver inflammation was assessed. RESULTS: Even though absence of myeloid IFNγ signaling attenuated the myeloid IFNγ response, no significant differences in atherosclerotic lesion size or phenotype were found. Also, when examining the liver inflammatory state no effects of IFNγR2 deficiency could be observed. CONCLUSION: Overall, our data argue against a role for myeloid IFNγR2 in atherosclerosis development. Since myeloid IFNγ signaling seems to be nonessential throughout atherogenesis, it is important to understand the mechanisms by which IFNγ acts in atherogenesis. In the future new studies should be performed considering other cell-specific targets.


Assuntos
Aterosclerose/metabolismo , Macrófagos Peritoneais/metabolismo , Receptores de Interferon/deficiência , Receptores de LDL/deficiência , Animais , Aterosclerose/genética , Transplante de Medula Óssea , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Hepatite/genética , Hepatite/metabolismo , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de Interferon/genética , Receptores de LDL/genética , Transdução de Sinais , Receptor de Interferon gama
20.
PLoS Pathog ; 11(2): e1004635, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25658840

RESUMO

IFNγ signaling drives dendritic cells (DCs) to promote type I T cell (Th1) immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg) cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Interferon gama/imunologia , Linfócitos T Reguladores/imunologia , Toxoplasmose/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Inflamação/imunologia , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/imunologia , Proteínas com Domínio T/imunologia , Linfócitos T Reguladores/citologia , Células Th1/citologia , Células Th1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...