Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0286545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37315005

RESUMO

Bioko Island (Equatorial Guinea) hosts important nesting habitat for leatherback sea turtles, with the main nesting beaches found on the island's southern end. Nest monitoring and protection have been ongoing for more than two decades, although distribution and habitat range at sea remains to be determined. This study uses satellite telemetry to describe the movements of female leatherback turtles (n = 10) during and following the breeding season, tracking them to presumed offshore foraging habitats in the south Atlantic Ocean. Leatherback turtles spent 100% of their time during the breeding period within the Exclusive Economic Zone (EEZ) of Equatorial Guinea, with a core distribution focused on the south of Bioko Island extending up to 10 km from the coast. During this period, turtles spent less than 10% of time within the existing protected area. Extending the border of this area by 3 km offshore would lead to a greater than threefold increase in coverage of turtle distribution (29.8 ± 19.0% of time), while an expansion to 15 km offshore would provide spatial coverage for more than 50% of tracking time. Post-nesting movements traversed the territorial waters of Sao Tome and Principe (6.4%of tracking time), Brazil (0.85%), Ascension (1.8%), and Saint Helena (0.75%). The majority (70%) of tracking time was spent in areas beyond national jurisdiction (i.e. the High Seas). This study reveals that conservation benefits could be achieved by expanding existing protected areas stretching from the Bioko coastal zone, and suggests shared migratory routes and foraging space between the Bioko population and other leatherback turtle rookeries in this region.


Assuntos
Tartarugas , Feminino , Animais , Guiné Equatorial , Ecologia , Répteis , Ilhas Atlânticas
2.
Conserv Genet ; 23(6): 995-1010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36397975

RESUMO

Globally distributed marine taxa are well suited for investigations of biogeographic impacts on genetic diversity, connectivity, and population demography. The sea turtle genus Lepidochelys includes the wide-ranging and abundant olive ridley (L. olivacea), and the geographically restricted and 'Critically Endangered' Kemp's ridley (L. kempii). To investigate their historical biogeography, we analyzed a large dataset of mitochondrial DNA (mtDNA) sequences from olive (n = 943) and Kemp's (n = 287) ridleys, and genotyped 15 nuclear microsatellite loci in a global sample of olive ridleys (n = 285). We found that the ridley species split ~ 7.5 million years ago, before the Panama Isthmus closure. The most ancient mitochondrial olive ridley lineage, located in the Indian Ocean, was dated to ~ 2.2 Mya. Both mitochondrial and nuclear markers revealed significant structure for olive ridleys between Atlantic (ATL), East Pacific (EP), and Indo-West Pacific (IWP) areas. However, the divergence of mtDNA clades was very recent (< 1 Mya) with low within- clade diversity, supporting a recurrent extinction-recolonization model for these ocean regions. All data showed that ATL and IWP groups were more closely related than those in the EP, with mtDNA data supporting recent recolonization of the ATL from the IWP. Individual olive ridley dispersal between the ATL, EP, and IN/IWP could be interpreted as more male- than female-biased, and genetic diversity was lowest in the Atlantic Ocean. All populations showed signs of recent expansion, and estimated time frames were concordant with their recent colonization history. Investigating species abundance and distribution changes over time is central to evolutionary biology, and this study provides a historical biogeographic context for marine vertebrate conservation and management. Supplementary Information: The online version contains supplementary material available at 10.1007/s10592-022-01465-3.

3.
Proc Biol Sci ; 286(1911): 20191472, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31551061

RESUMO

The distributions of migratory species in the ocean span local, national and international jurisdictions. Across these ecologically interconnected regions, migratory marine species interact with anthropogenic stressors throughout their lives. Migratory connectivity, the geographical linking of individuals and populations throughout their migratory cycles, influences how spatial and temporal dynamics of stressors affect migratory animals and scale up to influence population abundance, distribution and species persistence. Population declines of many migratory marine species have led to calls for connectivity knowledge, especially insights from animal tracking studies, to be more systematically and synthetically incorporated into decision-making. Inclusion of migratory connectivity in the design of conservation and management measures is critical to ensure they are appropriate for the level of risk associated with various degrees of connectivity. Three mechanisms exist to incorporate migratory connectivity into international marine policy which guides conservation implementation: site-selection criteria, network design criteria and policy recommendations. Here, we review the concept of migratory connectivity and its use in international policy, and describe the Migratory Connectivity in the Ocean system, a migratory connectivity evidence-base for the ocean. We propose that without such collaboration focused on migratory connectivity, efforts to effectively conserve these critical species across jurisdictions will have limited effect.


Assuntos
Migração Animal , Conservação dos Recursos Naturais , Política Ambiental , Animais , Ecossistema , Geografia , Oceanos e Mares
4.
PLoS One ; 6(5): e19905, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21589942

RESUMO

Tractable conservation measures for long-lived species require the intersection between protection of biologically relevant life history stages and a socioeconomically feasible setting. To protect breeding adults, we require knowledge of animal movements, how movement relates to political boundaries, and our confidence in spatial analyses of movement. We used satellite tracking and a switching state-space model to determine the internesting movements of olive ridley sea turtles (Lepidochelys olivacea) (n = 18) in Central Africa during two breeding seasons (2007-08, 2008-09). These movements were analyzed in relation to current park boundaries and a proposed transboundary park between Gabon and the Republic of Congo, both created to reduce unintentional bycatch of sea turtles in marine fisheries. We additionally determined confidence intervals surrounding home range calculations. Turtles remained largely within a 30 km radius from the original nesting site before departing for distant foraging grounds. Only 44.6 percent of high-density areas were found within the current park but the proposed transboundary park would incorporate 97.6 percent of high-density areas. Though tagged individuals originated in Gabon, turtles were found in Congolese waters during greater than half of the internesting period (53.7 percent), highlighting the need for international cooperation and offering scientific support for a proposed transboundary park. This is the first comprehensive study on the internesting movements of solitary nesting olive ridley sea turtles, and it suggests the opportunity for tractable conservation measures for female nesting olive ridleys at this and other solitary nesting sites around the world. We draw from our results a framework for cost-effective protection of long-lived species using satellite telemetry as a primary tool.


Assuntos
Biologia Marinha , Tartarugas , África Central , Animais
5.
Proc Biol Sci ; 278(1716): 2338-47, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21208949

RESUMO

Despite extensive work carried out on leatherback turtles (Dermochelys coriacea) in the North Atlantic and Indo-Pacific, very little is known of the at-sea distribution of this species in the South Atlantic, where the world's largest population nests in Gabon (central Africa). This paucity of data is of marked concern given the pace of industrialization in fisheries with demonstrable marine turtle bycatch in African/Latin American waters. We tracked the movements of 25 adult female leatherback turtles obtaining a range of fundamental and applied insights, including indications for methodological advancement. Individuals could be assigned to one of three dispersal strategies, moving to (i) habitats of the equatorial Atlantic, (ii) temperate habitats off South America or (iii) temperate habitats off southern Africa. While occupying regions with high surface chlorophyll concentrations, these strategies exposed turtles to some of the world's highest levels of longline fishing effort, in addition to areas with coastal gillnet fisheries. Satellite tracking highlighted that at least 11 nations should be involved in the conservation of this species in addition to those with distant fishing fleets. The majority of tracking days were, however, spent in the high seas, where effective implementation of conservation efforts is complex to achieve.


Assuntos
Migração Animal/fisiologia , Conservação dos Recursos Naturais/métodos , Demografia , Ecossistema , Pesqueiros , Tartarugas/fisiologia , Animais , Oceano Atlântico , Clorofila/análise , Conservação dos Recursos Naturais/estatística & dados numéricos , Feminino , Água do Mar/química , Telemetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...