Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 12: 695202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795625

RESUMO

Surgery for tongue cancer often results in a major loss in quality of life. While MRI may be used to minimise the volume of excised tissue, often the full tumour extent is missed. This tumour extent may be detected with metabolic imaging. One of the main reasons for the lack of metabolic information on tongue cancer would be the absence of an x-nuclear coil with the tongue as a focus target. Metabolic MRI through 31P MRSI is known as a powerful tool to non-invasively study elevated cell proliferation and disturbed energy metabolism in tumours. Severe magnetic field non-uniformities are inherently caused by the substantial difference in magnetic susceptibilities of tissue and air in the mouth and its environs. Despite this, the wide chemical shift dispersion of 31P could still facilitate precise detection of the cell proliferation biomarkers, phospomonoesters and diesters, as well as energy metabolites ATP, inorganic phosphate, and phosphocreatine potentially mapped over the tongue or tumour in vivo. In this study, we present the first 31P MRSI data of the human tongue in vivo from healthy volunteers and a patient with a tongue tumour at 7 T MRI using a 1H 8-channel transceiver setup placed inside a body 31P transmitter, which is able to get a uniform excitation from the tongue while providing comfortable access to the patient. In addition, a user-friendly external 31P receiver array is used to provide high sensitivity (80%) comparable to an uncomfortable inner mouth loop coil positioned on the tongue. The primary aim is the demonstration of 31P metabolite profiles in the tongue and the differences between healthy and malignant tissue. Indeed, clear elevated cell proliferation expressed as enhanced phosphomonoesters is observed in the tumour vs. the healthy part of the tongue. This can be performed within a total scan duration of 30 min, comparable to clinical scans, with a spatial resolution of 1.5 cm for the 10-min 31P MRSI scan.

2.
IEEE Trans Biomed Eng ; 68(2): 712-717, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32746075

RESUMO

Temperature monitoring plays a central role in improving clinical effectiveness of adjuvant hyperthermia. The potential of magnetic resonance thermometry for treatment monitoring purposes led to several MR-guided hyperthermia approaches. However, the proposed solutions were sub-optimal due to technological and intrinsic limitations. These hamper achieving target conformal heating possibilities (applicator limitations) and accurate thermometry (inadequate signal-to-noise-ratio (SNR)). In this work, we studied proof of principle of a dual-function hyperthermia approach based on a coil array (64 MHz, 1.5 T) that is integrated in-between a phased array for heating (434 MHz) for maximum signal receive in order to improve thermometry accuracy. Hereto, we designed and fabricated a superficial hyperthermia mimicking planar array setup to study the most challenging interactions of generic phased-array setups in order to validate the integrated approach. Experiments demonstrated that the setup complies with the superficial hyperthermia guidelines for heating and is able to improve SNR at 2-4 cm depth by 17%, as compared to imaging using the body coil. Hence, the results showed the feasibility of our dual-function MR-guided hyperthermia approach as basis for the development of application specific setups.


Assuntos
Hipertermia Induzida , Termometria , Humanos , Hipertermia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
3.
Magn Reson Med ; 83(2): 765-775, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31441537

RESUMO

PURPOSE: The design and performance of a novel head coil setup for 31 P spectroscopy at ultra-high field strengths (7T) is presented. The described system supports measurements at both the 1 H and 31 P resonance frequencies. METHODS: The novel coil consists of 2, actively detunable, coaxial birdcage coils to give homogeneous transmit, combined with a double resonant 30 channel receive array. This allows for anatomical imaging combined with 31 P acquisitions over the whole head, without changing coils or disturbing the subject. A phosphate buffer phantom and 3 healthy volunteers were scanned with a pulse acquire CSI sequence using both the novel array coil and a conventional transceiver birdcage. Four different methods of combining the array channels were compared at 3 different levels of SNR. RESULTS: The novel coil setup delivers significantly increased 31 P SNR in the peripheral regions of the brain, reaching up to factor 8, while maintaining comparable performance relative to the birdcage in the center. CONCLUSIONS: The new system offers the potential to acquire whole brain 31 P MRSI with superior signal relative to the standard options.


Assuntos
Encéfalo/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Fósforo/química , Razão Sinal-Ruído , Desenho de Equipamento , Voluntários Saudáveis , Humanos , Imagens de Fantasmas , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA