Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cancer ; 145(2): 435-449, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650179

RESUMO

Myxoid liposarcoma (MLS) shows extensive intratumoural heterogeneity with distinct subpopulations of tumour cells. Despite improved survival of MLS patients, existing therapies have shortcomings as they fail to target all tumour cells. The nature of chemotherapy-resistant cells in MLS remains unknown. Here, we show that MLS cell lines contained subpopulations of cells that can form spheres, efflux Hoechst dye and resist doxorubicin, all properties attributed to cancer stem cells (CSCs). By single-cell gene expression, western blot, phospho-kinase array, immunoprecipitation, immunohistochemistry, flow cytometry and microarray analysis we showed that a subset of MLS cells expressed JAK-STAT genes with active signalling. JAK1/2 inhibition via ruxolitinib decreased, while stimulation with LIF increased, phosphorylation of STAT3 and the number of cells with CSC properties indicating that JAK-STAT signalling controlled the number of cells with CSC features. We also show that phosphorylated STAT3 interacted with the SWI/SNF complex. We conclude that MLS contains JAK-STAT-regulated subpopulations of cells with CSC features. Combined doxorubicin and ruxolitinib treatment targeted both proliferating cells as well as cells with CSC features, providing new means to circumvent chemotherapy resistance in treatment of MLS patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Lipossarcoma Mixoide/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinases/metabolismo , Lipossarcoma Mixoide/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Nitrilas , Fosforilação , Pirazóis/farmacologia , Pirimidinas , Fatores de Transcrição STAT/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
2.
Biomol Detect Quantif ; 12: 1-6, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28702366

RESUMO

Quantitative Real-Time Polymerase Chain Reaction, better known as qPCR, is the most sensitive and specific technique we have for the detection of nucleic acids. Even though it has been around for more than 30 years and is preferred in research applications, it has yet to win broad acceptance in routine practice. This requires a means to unambiguously assess the performance of specific qPCR analyses. Here we present methods to determine the limit of detection (LoD) and the limit of quantification (LoQ) as applicable to qPCR. These are based on standard statistical methods as recommended by regulatory bodies adapted to qPCR and complemented with a novel approach to estimate the precision of LoD.

3.
Methods ; 59(1): 80-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23021995

RESUMO

Individual cells represent the basic unit in tissues and organisms and are in many aspects unique in their properties. The introduction of new and sensitive techniques to study single-cells opens up new avenues to understand fundamental biological processes. Well established statistical tools and recommendations exist for gene expression data based on traditional cell population measurements. However, these workflows are not suitable, and some steps are even inappropriate, to apply on single-cell data. Here, we present a simple and practical workflow for preprocessing of single-cell data generated by reverse transcription quantitative real-time PCR. The approach is demonstrated on a data set based on profiling of 41 genes in 303 single-cells. For some pre-processing steps we present options and also recommendations. In particular, we demonstrate and discuss different strategies for handling missing data and scaling data for downstream multivariate analysis. The aim of this workflow is provide guide to the rapidly growing community studying single-cells by means of reverse transcription quantitative real-time PCR profiling.


Assuntos
Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Célula Única , Animais , Astrócitos/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Calibragem , DNA Complementar/genética , Interpretação Estatística de Dados , Camundongos , Análise de Componente Principal
4.
Methods ; 50(4): 323-35, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20079843

RESUMO

Advances in qPCR technology allow studies of increasingly large systems comprising many genes and samples. The increasing data sizes allow expression profiling both in the gene and the samples dimension while also putting higher demands on sound statistical analysis and expertise to handle and interpret its results. We distinguish between exploratory and confirmatory statistical studies. In this paper we demonstrate several techniques available for exploratory studies on a system of Xenopus laevis development from egg to tadpole. Techniques include hierarchical clustering, heatmap, principal component analysis and self-organizing maps. We stress that even though exploratory studies are excellent for generating hypotheses, results have not been proven statistically significant until an independent confirmatory study has been performed. An exploratory study may certainly be valuable in its own right, and there are often not enough resources to report both an exploratory and a confirmatory study at the same time. However, exploratory and confirmatory studies are intimately connected and we would like to raise that awareness among qPCR practitioners. We suggest that scientific reports should always have a hypothesis focus. Reports are either hypothesis generating, from an exploratory study, or hypothesis validating, from a confirmatory study, or both. In either case, we suggest the generated or validated hypotheses be specifically stated.


Assuntos
Perfilação da Expressão Gênica/métodos , Xenopus laevis/genética , Algoritmos , Animais , Análise por Conglomerados , Embrião não Mamífero , Feminino , Fertilização in vitro , Masculino , Análise de Componente Principal , Estatística como Assunto , Xenopus laevis/embriologia , Xenopus laevis/crescimento & desenvolvimento
5.
BMC Genomics ; 9: 170, 2008 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-18412983

RESUMO

BACKGROUND: The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. RESULTS: We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. CONCLUSION: Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.


Assuntos
Álcool Desidrogenase/metabolismo , Perfilação da Expressão Gênica/métodos , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/efeitos dos fármacos , Glucose/farmacologia , Modelos Biológicos , Análise de Componente Principal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Especificidade da Espécie
6.
Mol Aspects Med ; 27(2-3): 95-125, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16460794

RESUMO

The scientific, medical, and diagnostic communities have been presented the most powerful tool for quantitative nucleic acids analysis: real-time PCR [Bustin, S.A., 2004. A-Z of Quantitative PCR. IUL Press, San Diego, CA]. This new technique is a refinement of the original Polymerase Chain Reaction (PCR) developed by Kary Mullis and coworkers in the mid 80:ies [Saiki, R.K., et al., 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science 230, 1350], for which Kary Mullis was awarded the 1993 year's Nobel prize in Chemistry. By PCR essentially any nucleic acid sequence present in a complex sample can be amplified in a cyclic process to generate a large number of identical copies that can readily be analyzed. This made it possible, for example, to manipulate DNA for cloning purposes, genetic engineering, and sequencing. But as an analytical technique the original PCR method had some serious limitations. By first amplifying the DNA sequence and then analyzing the product, quantification was exceedingly difficult since the PCR gave rise to essentially the same amount of product independently of the initial amount of DNA template molecules that were present. This limitation was resolved in 1992 by the development of real-time PCR by Higuchi et al. [Higuchi, R., Dollinger, G., Walsh, P.S., Griffith, R., 1992. Simultaneous amplification and detection of specific DNA-sequences. Bio-Technology 10(4), 413-417]. In real-time PCR the amount of product formed is monitored during the course of the reaction by monitoring the fluorescence of dyes or probes introduced into the reaction that is proportional to the amount of product formed, and the number of amplification cycles required to obtain a particular amount of DNA molecules is registered. Assuming a certain amplification efficiency, which typically is close to a doubling of the number of molecules per amplification cycle, it is possible to calculate the number of DNA molecules of the amplified sequence that were initially present in the sample. With the highly efficient detection chemistries, sensitive instrumentation, and optimized assays that are available today the number of DNA molecules of a particular sequence in a complex sample can be determined with unprecedented accuracy and sensitivity sufficient to detect a single molecule. Typical uses of real-time PCR include pathogen detection, gene expression analysis, single nucleotide polymorphism (SNP) analysis, analysis of chromosome aberrations, and most recently also protein detection by real-time immuno PCR.


Assuntos
Perfilação da Expressão Gênica/métodos , Reação em Cadeia da Polimerase/métodos , Software , Animais , Sistemas Computacionais , Feminino , Corantes Fluorescentes/química , Amplificação de Genes , Expressão Gênica , Reação em Cadeia da Polimerase/instrumentação , Sensibilidade e Especificidade , Xenopus laevis
7.
J Fluoresc ; 14(2): 139-44, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15615039

RESUMO

Protolytic equilibria often have profound effects on chemical activity, since protolytic species usually behave quite differently. It is therefore important to characterize the protolytic properties of important chemicals. Here we present a new approach to study protolytic equilibria of fluorescent species that is extremely accurate and relies on minimum assumptions. We show that by measuring 2-dimensional excitation/emission scans of samples at different pH. the 3-dimensional experimental data set, I(lambda(ex), lambda(em), C(pH)), can be unambiguously decomposed into the spectral responses of the protolytic species present as well as their concentration. The approach is demonstrated on the protolytic equilibrium of fluorescein. Although the fluorescein monoanion cannot be obtained in pure form, the spectra and concentrations of both fluorescein species, as well as the protolytic constant, are determined with excellent accuracy. The proposed method is general and can be applied not only for studies of protolytic equilibria, but on any chemical equilibria and chemical reactions involving fluorescent species.


Assuntos
Fluoresceína/química , Espectrometria de Fluorescência/métodos , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...