Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 21(13): 2338-54, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20462955

RESUMO

Cells respond to growth factors by either migrating or proliferating, but not both at the same time, a phenomenon termed migration-proliferation dichotomy. The underlying mechanism of this phenomenon has remained unknown. We demonstrate here that Galpha(i) protein and GIV, its nonreceptor guanine nucleotide exchange factor (GEF), program EGF receptor (EGFR) signaling and orchestrate this dichotomy. GIV directly interacts with EGFR, and when its GEF function is intact, a Galpha(i)-GIV-EGFR signaling complex assembles, EGFR autophosphorylation is enhanced, and the receptor's association with the plasma membrane (PM) is prolonged. Accordingly, PM-based motogenic signals (PI3-kinase-Akt and PLCgamma1) are amplified, and cell migration is triggered. In cells expressing a GEF-deficient mutant, the Galphai-GIV-EGFR signaling complex is not assembled, EGFR autophosphorylation is reduced, the receptor's association with endosomes is prolonged, mitogenic signals (ERK 1/2, Src, and STAT5) are amplified, and cell proliferation is triggered. In rapidly growing, poorly motile breast and colon cancer cells and in noninvasive colorectal carcinomas in situ in which EGFR signaling favors mitosis over motility, a GEF-deficient splice variant of GIV was identified. In slow growing, highly motile cancer cells and late invasive carcinomas, GIV is highly expressed and has an intact GEF motif. Thus, inclusion or exclusion of GIV's GEF motif, which activates Galphai, modulates EGFR signaling, generates migration-proliferation dichotomy, and most likely influences cancer progression.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células , Receptores ErbB/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas dos Microfilamentos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Receptores ErbB/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Dados de Sequência Molecular , Ligação Proteica , Transdução de Sinais/fisiologia , Proteínas de Transporte Vesicular/genética
2.
Mol Cell Biol ; 27(22): 7848-55, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17846120

RESUMO

Selenoprotein mRNAs are potential targets for degradation via nonsense-mediated decay due to the presence of in-frame UGA codons that can be decoded as either selenocysteine or termination codons. When UGA decoding is inefficient, as occurs when selenium is limiting, termination occurs at these positions. Based on the predicted exon-intron structure, 14 of the 25 human selenoprotein mRNAs are predicted to be sensitive to nonsense-mediated decay. Among these, sensitivity varies widely, resulting in a hierarchy of preservation or degradation of selenoprotein mRNAs and, thus, of selenoprotein synthesis. Potential factors in dictating the hierarchy of selenoprotein synthesis are the Sec insertion sequence RNA-binding proteins, SBP2 and nucleolin. To investigate the mechanistic basis for this hierarchy and the role of these two proteins, we carried out knockdowns of SBP2 expression and assessed the effects on selenoprotein mRNA levels. We also investigated in vivo binding of selenoprotein mRNAs by SBP2 and nucleolin via immunoprecipitation of the proteins and quantitation of bound mRNAs. We report that SBP2 exhibits strong preferential binding to some selenoprotein mRNAs over others, whereas nucleolin exhibits minimal differences in binding. Thus, SBP2 is a major determinant in dictating the hierarchy of selenoprotein synthesis via differential selenoprotein mRNA translation and sensitivity to nonsense-mediated decay.


Assuntos
Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Selenoproteínas/metabolismo , Animais , Linhagem Celular , Inativação Gênica , Humanos , Fosfoproteínas/metabolismo , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Selenoproteínas/genética , Nucleolina
3.
Mol Cell Biol ; 26(6): 2337-46, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16508009

RESUMO

Selenocysteine incorporation in eukaryotes occurs cotranslationally at UGA codons via the interactions of RNA-protein complexes, one comprised of selenocysteyl (Sec)-tRNA([Ser]Sec) and its specific elongation factor, EFsec, and another consisting of the SECIS element and SECIS binding protein, SBP2. Other factors implicated in this pathway include two selenophosphate synthetases, SPS1 and SPS2, ribosomal protein L30, and two factors identified as binding tRNA([Ser]Sec), termed soluble liver antigen/liver protein (SLA/LP) and SECp43. We report that SLA/LP and SPS1 interact in vitro and in vivo and that SECp43 cotransfection increases this interaction and redistributes all three proteins to a predominantly nuclear localization. We further show that SECp43 interacts with the selenocysteyl-tRNA([Ser]Sec)-EFsec complex in vitro, and SECp43 coexpression promotes interaction between EFsec and SBP2 in vivo. Additionally, SECp43 increases selenocysteine incorporation and selenoprotein mRNA levels, the latter presumably due to circumvention of nonsense-mediated decay. Thus, SECp43 emerges as a key player in orchestrating the interactions and localization of the other factors involved in selenoprotein biosynthesis. Finally, our studies delineating the multiple, coordinated protein-nucleic acid interactions between SECp43 and the previously described selenoprotein cotranslational factors resulted in a model of selenocysteine biosynthesis and incorporation dependent upon both cytoplasmic and nuclear supramolecular complexes.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Selenocisteína/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Códon de Terminação , Citoplasma/metabolismo , Humanos , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , Proteínas de Ligação a RNA/genética , Selenoproteínas/biossíntese , Selenoproteínas/metabolismo
4.
Mol Cell Biol ; 26(5): 1795-805, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16478999

RESUMO

Recoding of UGA from a stop codon to selenocysteine poses a dilemma for the protein translation machinery. In eukaryotes, two factors that are crucial to this recoding process are the mRNA binding protein of the Sec insertion sequence, SBP2, and the specialized elongation factor, EFsec. We sought to determine the subcellular localization of these selenoprotein synthesis factors in mammalian cells and thus gain insight into how selenoprotein mRNAs might circumvent nonsense-mediated decay. Intriguingly, both EFsec and SBP2 localization differed depending on the cell line but significant colocalization of the two proteins was observed in cells where SBP2 levels were detectable. We identify functional nuclear localization and export signals in both proteins, demonstrate that SBP2 undergoes nucleocytoplasmic shuttling, and provide evidence that SBP2 levels and localization may influence EFsec localization. Our results suggest a mechanism for the nuclear assembly of the selenocysteine incorporation machinery that could allow selenoprotein mRNAs to circumvent nonsense-mediated decay, thus providing new insights into the mechanism of selenoprotein translation.


Assuntos
Núcleo Celular/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Linhagem Celular , Núcleo Celular/genética , Citoplasma/metabolismo , Código Genético , Humanos , Camundongos , Dados de Sequência Molecular , Sinais de Exportação Nuclear , Sinais de Localização Nuclear , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Ratos , Selenocisteína/genética , Selenocisteína/metabolismo
5.
Genes Cells ; 8(12): 963-71, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14750951

RESUMO

BACKGROUND: Insects appear to have diverged from both higher and lower organisms in their defense mechanisms against oxidative damage. They do not encode glutathione peroxidases or glutathione reductases, and their thioredoxin reductases exhibit distinct properties from those of higher and lower species. Nonetheless, appropriate balance of anti-oxidants and pro-oxidants, and protection from damaging reactive oxygen species are clearly crucial in insects for viability, normal functioning of signalling pathways and morphogenesis, and have been implicated in studies on longevity in flies and other organisms. RESULTS: Two novel selenoproteins, dselH and dselK, were recently identified in Drosophila melanogaster. We have used RNAi in D. melanogaster embryos and in Schneider S2 cells to inhibit expression of these proteins. We report that inhibition of either dselH or dselK expression significantly reduces viability in embryos. We further show that dselH silencing decreases total anti-oxidant capacity in embryos and Schneider cells, and increases lipid peroxidation in cells. Conversely, transient expression of dselH in the cell line decreases lipid peroxidation, and reverses the toxic effects of a glutathione-depleting drug. The latter correlates with sparing of glutathione levels. CONCLUSIONS: These studies suggest that the well-known role of selenoproteins in vertebrate anti-oxidant defenses also extends to include invertebrates.


Assuntos
Antioxidantes/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Proteínas de Membrana/fisiologia , Proteínas/fisiologia , Animais , Linhagem Celular , Sobrevivência Celular , Citoproteção , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário e Fetal , Glutationa/metabolismo , Proteínas de Membrana/genética , Estresse Oxidativo , Proteínas/genética , Interferência de RNA , Selenoproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA