Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS One ; 18(2): e0281772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36791076

RESUMO

Lipoprotein(a), also known as Lp(a), is an LDL-like particle composed of apolipoprotein(a) (apo(a)) bound covalently to apolipoprotein B100. Plasma concentrations of Lp(a) are highly heritable and vary widely between individuals. Elevated plasma concentration of Lp(a) is considered as an independent, causal risk factor of cardiovascular disease (CVD). Targeted mass spectrometry (LC-SRM/MS) combined with stable isotope-labeled recombinant proteins provides robust and precise quantification of proteins in the blood, making LC-SRM/MS assays appealing for monitoring plasma proteins for clinical implications. This study presents a novel quantitative approach, based on proteotypic peptides, to determine the absolute concentration of apo(a) from two microliters of plasma and qualified according to guideline requirements for targeted proteomics assays. After optimization, assay parameters such as linearity, lower limits of quantification (LLOQ), intra-assay variability (CV: 4.7%) and inter-assay repeatability (CV: 7.8%) were determined and the LC-SRM/MS results were benchmarked against a commercially available immunoassay. In summary, the measurements of an apo(a) single copy specific peptide and a kringle 4 specific peptide allow for the determination of molar concentration and relative size of apo(a) in individuals.


Assuntos
Apolipoproteínas A , Proteômica , Humanos , Apoproteína(a) , Peptídeos/química , Lipoproteína(a)
2.
Elife ; 102021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723797

RESUMO

Bacteria must balance the different needs for substrate assimilation, growth functions, and resilience in order to thrive in their environment. Of all cellular macromolecules, the bacterial proteome is by far the most important resource and its size is limited. Here, we investigated how the highly versatile 'knallgas' bacterium Cupriavidus necator reallocates protein resources when grown on different limiting substrates and with different growth rates. We determined protein quantity by mass spectrometry and estimated enzyme utilization by resource balance analysis modeling. We found that C. necator invests a large fraction of its proteome in functions that are hardly utilized. Of the enzymes that are utilized, many are present in excess abundance. One prominent example is the strong expression of CBB cycle genes such as Rubisco during growth on fructose. Modeling and mutant competition experiments suggest that CO2-reassimilation through Rubisco does not provide a fitness benefit for heterotrophic growth, but is rather an investment in readiness for autotrophy.


Assuntos
Cupriavidus necator/crescimento & desenvolvimento , Cupriavidus necator/metabolismo , Proteoma/metabolismo , Processos Autotróficos , Proteínas de Bactérias/biossíntese , Dióxido de Carbono/metabolismo , Cupriavidus necator/enzimologia , Processos Heterotróficos , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
3.
Cancers (Basel) ; 13(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478099

RESUMO

Pyruvate kinase muscle type (PKM) is a key enzyme in glycolysis and plays an important oncological role in cancer. However, the association of PKM expression and the survival outcome of patients with different cancers is controversial. We employed systems biology methods to reveal prognostic value and potential biological functions of PKM transcripts in different human cancers. Protein products of transcripts were shown and detected by western blot and mass spectrometry analysis. We focused on different transcripts of PKM and investigated the associations between their mRNA expression and the clinical survival of the patients in 25 different cancers. We find that the transcripts encoding PKM2 and three previously unstudied transcripts, namely ENST00000389093, ENST00000568883, and ENST00000561609, exhibited opposite prognostic indications in different cancers. Moreover, we validated the prognostic effect of these transcripts in an independent kidney cancer cohort. Finally, we revealed that ENST00000389093 and ENST00000568883 possess pyruvate kinase enzymatic activity and may have functional roles in metabolism, cell invasion, and hypoxia response in cancer cells. Our study provided a potential explanation to the controversial prognostic indication of PKM, and could invoke future studies focusing on revealing the biological and oncological roles of these alternative spliced variants of PKM.

4.
J Allergy Clin Immunol ; 147(3): 1077-1086, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32791163

RESUMO

BACKGROUND: The interaction of allergens and allergen-specific IgE initiates the allergic cascade after crosslinking of receptors on effector cells. Antibodies of other isotypes may modulate such a reaction. Receptor crosslinking requires binding of antibodies to multiple epitopes on the allergen. Limited information is available on the complexity of the epitope structure of most allergens. OBJECTIVES: We sought to allow description of the complexity of IgE, IgG4, and IgG epitope recognition at a global, allergome-wide level during allergen-specific immunotherapy (AIT). METHODS: We generated an allergome-wide microarray comprising 731 allergens in the form of more than 172,000 overlapping 16-mer peptides. Allergen recognition by IgE, IgG4, and IgG was examined in serum samples collected from subjects undergoing AIT against pollen allergy. RESULTS: Extensive induction of linear peptide-specific Phl p 1- and Bet v 1-specific humoral immunity was demonstrated in subjects undergoing a 3-year-long AIT against grass and birch pollen allergy, respectively. Epitope profiles differed between subjects but were largely established already after 1 year of AIT, suggesting that dominant allergen-specific antibody clones remained as important contributors to humoral immunity following their initial establishment during the early phase of AIT. Complex, subject-specific patterns of allergen isoform and group cross-reactivities in the repertoires were observed, patterns that may indicate different levels of protection against different allergen sources. CONCLUSIONS: The study highlights the complexity and subject-specific nature of allergen epitopes recognized following AIT. We envisage that epitope deconvolution will be an important aspect of future efforts to describe and analyze the outcomes of AIT in a personalized manner.


Assuntos
Alérgenos/metabolismo , Antígenos de Plantas/metabolismo , Dessensibilização Imunológica/métodos , Epitopos de Linfócito B/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Adulto , Alérgenos/imunologia , Antígenos de Plantas/imunologia , Betula , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Imunoglobulina E/metabolismo , Isotipos de Imunoglobulinas/metabolismo , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Peptídeos/imunologia , Proteínas de Plantas/imunologia , Poaceae , Rinite Alérgica Sazonal/terapia
5.
Nat Commun ; 11(1): 4487, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900998

RESUMO

An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipidomics, metabolomics, autoantibodies and immune cell profiling, complemented with gut microbiota composition and routine clinical chemistry. Overall, our results show high variation between individuals across different molecular readouts, while the intra-individual baseline variation is low. The analyses show that each individual has a unique and stable plasma protein profile throughout the study period and that many individuals also show distinct profiles with regards to the other omics datasets, with strong underlying connections between the blood proteome and the clinical chemistry parameters. In conclusion, the results support an individual-based definition of health and show that comprehensive omics profiling in a longitudinal manner is a path forward for precision medicine.


Assuntos
Envelhecimento Saudável/metabolismo , Metaboloma , Proteoma/metabolismo , Idoso , Estudos de Coortes , Feminino , Envelhecimento Saudável/genética , Voluntários Saudáveis , Humanos , Lipidômica , Estudos Longitudinais , Masculino , Metabolômica , Pessoa de Meia-Idade , Medicina de Precisão , Estudos Prospectivos , Proteômica , Suécia , Transcriptoma
6.
J Proteome Res ; 19(12): 4815-4825, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32820635

RESUMO

Spike-in of standards of known concentrations used in proteomics-based workflows is an attractive approach for both accurate and precise multiplexed protein quantification. Here, a quantitative method based on targeted proteomics analysis of plasma proteins using isotope-labeled recombinant standards originating from the Human Protein Atlas project has been established. The standards were individually quantified prior to being employed in the final multiplex assay. The assays are mainly directed toward actively secreted proteins produced in the liver, but may also originate from other parts of the human body. This study included 21 proteins classified by the FDA as either drug targets or approved clinical protein biomarkers. We describe the use of this multiplex assay for profiling a well-defined human cohort with sample collection spanning over a one-year period. Samples were collected at four different time points, which allowed for a longitudinal analysis to assess the variable plasma proteome within individuals. Two assays toward APOA1 and APOB had available clinical data, and the two assays were benchmarked against each other. The clinical assay is based on antibodies and shows high correlation between the two orthogonal methods, suggesting that targeted proteomics with highly parallel, multiplex analysis is an attractive alternative to antibody-based protein assays.


Assuntos
Proteoma , Proteômica , Proteínas Sanguíneas , Humanos , Marcação por Isótopo , Proteínas Recombinantes/genética
7.
EBioMedicine ; 57: 102854, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32629387

RESUMO

BACKGROUND: Precision medicine approaches aim to tackle diseases on an individual level through molecular profiling. Despite the growing knowledge about diseases and the reported diversity of molecular phenotypes, the descriptions of human health on an individual level have been far less elaborate. METHODS: To provide insights into the longitudinal protein signatures of well-being, we profiled blood plasma collected over one year from 101 clinically healthy individuals using multiplexed antibody assays. After applying an antibody validation scheme, we utilized > 700 protein profiles for in-depth analyses of the individuals' short-term health trajectories. FINDINGS: We found signatures of circulating proteomes to be highly individual-specific. Considering technical and longitudinal variability, we observed that 49% of the protein profiles were stable over one year. We also identified eight networks of proteins in which 11-242 proteins covaried over time. For each participant, there were unique protein profiles of which some could be explained by associations to genetic variants. INTERPRETATION: This observational and non-interventional study identifyed noticeable diversity among clinically healthy subjects, and facets of individual-specific signatures emerged by monitoring the variability of the circulating proteomes over time. To enable more personal hence precise assessments of health states, longitudinal profiling of circulating proteomes can provide a valuable component for precision medicine approaches. FUNDING: This work was supported by the Erling Persson Foundation, the Swedish Heart and Lung Foundation, the Knut and Alice Wallenberg Foundation, Science for Life Laboratory, and the Swedish Research Council.


Assuntos
Proteínas Sanguíneas/genética , Medicina de Precisão , Proteoma/genética , Proteômica , Adulto , Anticorpos , Feminino , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Suécia/epidemiologia
8.
N Biotechnol ; 58: 45-54, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32502629

RESUMO

The proteins secreted by human tissues and blood cells, the secretome, are important both for the basic understanding of human biology and for identification of potential targets for future diagnosis and therapy. Here, a high-throughput mammalian cell factory is presented that was established to create a resource of recombinant full-length proteins covering the majority of those annotated as 'secreted' in humans. The full-length DNA sequences of each of the predicted secreted proteins were generated by gene synthesis, the constructs were transfected into Chinese hamster ovary (CHO) cells and the recombinant proteins were produced, purified and analyzed. Almost 1,300 proteins were successfully generated and proteins predicted to be secreted into the blood were produced with a success rate of 65%, while the success rates for the other categories of secreted proteins were somewhat lower giving an overall one-pass success rate of ca. 58%. The proteins were used to generate targeted proteomics assays and several of the proteins were shown to be active in a phenotypic assay involving pancreatic ß-cell dedifferentiation. Many of the proteins that failed during production in CHO cells could be rescued in human embryonic kidney (HEK 293) cells suggesting that a cell factory of human origin can be an attractive alternative for production in mammalian cells. In conclusion, a high-throughput protein production and purification system has been successfully established to create a unique resource of the human secretome.


Assuntos
Ensaios de Triagem em Larga Escala , Animais , Células CHO , Cricetulus , DNA/biossíntese , DNA/genética , Células HEK293 , Humanos , Proteômica , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo
9.
Arthritis Rheumatol ; 72(10): 1643-1657, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32501655

RESUMO

OBJECTIVE: Anti-citrullinated protein antibodies (ACPAs) are a hallmark of seropositive rheumatoid arthritis (RA). Yet, the precise disease-relevant autoantigens that are targeted by ACPAs remains a matter of debate. This study utilized patient-derived monoclonal ACPAs, rather than serum autoantibody analysis, to characterize the multireactivity to different protein modifications and to reveal autoantibody subsets in patients with RA. METHODS: Twelve human monoclonal ACPAs (positive by the second-generation cyclic citrullinated peptide test) were generated from 6 RA patients, and a head-to-head comparison of their reactivities was performed. For profiling, we used a complementary DNA-based protein array (Engine GmbH) and 3 peptide-screening platforms with RA autoantigens (Thermo Fisher Scientific), citrullinated and carbamylated peptides (NimbleGen/Roche), or histone-derived peptides with different posttranslational modifications (JPT Histone Code), covering >207,000 peptides (>7,800 gene products). RESULTS: The fine-specificity profiles of the investigated ACPAs varied, but all of the monoclonal ACPAs displayed multireactivity to a large number of citrullinated peptides/proteins, each characterized by specific binding properties. ACPA subsets could be defined by clone-distinct consensus binding motifs (e.g., Cit-Gly, Gly-Cit, or Arg-Cit-Asp), with the most common ACPA recognition being that of a Gly in the +1 flanking position, but with additional amino acid preferences. For ACPA protein recognition, we observed a preference for citrullinated RNA-binding proteins with high Arg/Gly content. Six of the 12 ACPA clones also bound acetylated lysine (KAc) or homocitrulline peptide motifs, displaying a similar affinity or higher apparent affinity than that for citrullinated peptides. CONCLUSION: ACPAs and anti-modified protein autoantibodies represent overlapping facets of RA autoimmunity and bind to a wide variety of modified proteins, extending well beyond the historically recognized set of RA autoantigens. So far, KAc reactivity has been detected only in the context of anti-carbamylated and anti-citrullinated peptide autoantibody responses, postulating the existence of hierarchies of autoreactivity in RA. Future investigations of ACPA fine specificities and functionality should take into consideration the presence of consensus Cit/Carb/KAc motifs and the multireactivity of these autoantibodies in patients with RA.


Assuntos
Artrite Reumatoide/imunologia , Autoanticorpos/imunologia , Anticorpos Antiproteína Citrulinada/imunologia , Autoantígenos/imunologia , Epitopos/imunologia , Feminino , Humanos , Masculino
10.
Science ; 366(6472)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31857451

RESUMO

Blood is the predominant source for molecular analyses in humans, both in clinical and research settings. It is the target for many therapeutic strategies, emphasizing the need for comprehensive molecular maps of the cells constituting human blood. In this study, we performed a genome-wide transcriptomic analysis of protein-coding genes in sorted blood immune cell populations to characterize the expression levels of each individual gene across the blood cell types. All data are presented in an interactive, open-access Blood Atlas as part of the Human Protein Atlas and are integrated with expression profiles across all major tissues to provide spatial classification of all protein-coding genes. This allows for a genome-wide exploration of the expression profiles across human immune cell populations and all major human tissues and organs.


Assuntos
Células Sanguíneas/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Proteínas/genética
11.
Sci Signal ; 12(609)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772123

RESUMO

The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immunoassays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.


Assuntos
Bases de Dados de Proteínas , Proteoma/metabolismo , Proteômica , Humanos
12.
Mol Cell Proteomics ; 18(12): 2433-2446, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31591263

RESUMO

Stable isotope-labeled standard (SIS) peptides are used as internal standards in targeted proteomics to provide robust protein quantification, which is required in clinical settings. However, SIS peptides are typically added post trypsin digestion and, as the digestion efficiency can vary significantly between peptides within a protein, the accuracy and precision of the assay may be compromised. These drawbacks can be remedied by a new class of internal standards introduced by the Human Protein Atlas project, which are based on SIS recombinant protein fragments called SIS PrESTs. SIS PrESTs are added initially to the sample and SIS peptides are released on trypsin digestion. The SIS PrEST technology is promising for absolute quantification of protein biomarkers but has not previously been evaluated in a clinical setting. An automated and scalable solid phase extraction workflow for desalting and enrichment of plasma digests was established enabling simultaneous preparation of up to 96 samples. Robust high-precision quantification of 13 apolipoproteins was achieved using a novel multiplex SIS PrEST-based LC-SRM/MS Tier 2 assay in non-depleted human plasma. The assay exhibited inter-day coefficients of variation between 1.5% and 14.5% (median = 3.5%) and was subsequently used to investigate the effects of omega-3 carboxylic acids (OM3-CA) and fenofibrate on these 13 apolipoproteins in human plasma samples from a randomized placebo-controlled trial, EFFECT I (NCT02354976). No significant changes were observed in the OM3-CA arm, whereas treatment with fenofibrate significantly increased apoAII and reduced apoB, apoCI, apoE and apoCIV levels. The reduction in apoCIV following fenofibrate treatment is a novel finding. The study demonstrates that SIS PrESTs can facilitate the generation of robust multiplexed biomarker Tier 2 assays for absolute quantification of proteins in clinical studies.


Assuntos
Apolipoproteínas/sangue , Ácidos Carboxílicos/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Fenofibrato/farmacologia , Marcação por Isótopo , Espectrometria de Massas em Tandem/métodos , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Método Duplo-Cego , Humanos , Marcação por Isótopo/normas , Pessoa de Meia-Idade , Fragmentos de Peptídeos , Proteínas Recombinantes , Reprodutibilidade dos Testes
13.
J Proteome Res ; 18(7): 2706-2718, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31094526

RESUMO

The availability of proteomics resources hosting protein and peptide standards, as well as the data describing their analytical performances, will continue to enhance our current capabilities to develop targeted proteomics methods for quantitative biology. This study describes the analysis of a resource of 26,840 individually purified recombinant protein fragments corresponding to more than 16,000 human protein-coding genes. The resource was screened to identify proteotypic peptides suitable for targeted proteomics efforts, and we report LC-MS/MS assay coordinates for more than 25,000 proteotypic peptides, corresponding to more than 10,000 unique proteins. Additionally, peptide formation and digestion kinetics were, for a subset of the standards, monitored using a time-course protocol involving parallel digestion of isotope-labeled recombinant protein standards and endogenous human plasma proteins. We show that the strategy by adding isotope-labeled recombinant proteins before trypsin digestion enables short digestion protocols (≤60 min) with robust quantitative precision. In a proof-of-concept study, we quantified 23 proteins in human plasma using assay parameters defined in our study and used the standards to describe distinct clusters of individuals linked to different levels of LPA, APOE, SERPINA5, and TFRC. In summary, we describe the use and utility of a resource of recombinant proteins to identify proteotypic peptides useful for targeted proteomics assay development.


Assuntos
Fragmentos de Peptídeos/análise , Proteômica/métodos , Proteínas Recombinantes/análise , Proteínas Sanguíneas/análise , Cromatografia Líquida/métodos , Humanos , Marcação por Isótopo/métodos , Espectrometria de Massas em Tandem/métodos , Tripsina/metabolismo
14.
Arthritis Rheumatol ; 71(2): 196-209, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30152202

RESUMO

OBJECTIVE: Antibodies against posttranslationally modified proteins are a hallmark of rheumatoid arthritis (RA), but the emergence and pathogenicity of these autoantibodies are still incompletely understood. The aim of this study was to analyze the antigen specificities and mutation patterns of monoclonal antibodies (mAb) derived from RA synovial plasma cells and address the question of antigen cross-reactivity. METHODS: IgG-secreting cells were isolated from RA synovial fluid, and the variable regions of the immunoglobulins were sequenced (n = 182) and expressed in full-length mAb (n = 93) and also as germline-reverted versions. The patterns of reactivity with 53,019 citrullinated peptides and 49,211 carbamylated peptides and the potential of the mAb to promote osteoclastogenesis were investigated. RESULTS: Four unrelated anti-citrullinated protein autoantibodies (ACPAs), of which one was clonally expanded, were identified and found to be highly somatically mutated in the synovial fluid of a patient with RA. The ACPAs recognized >3,000 unique peptides modified by either citrullination or carbamylation. This highly multireactive autoantibody feature was replicated for Ig sequences derived from B cells from the peripheral blood of other RA patients. The plasma cell-derived mAb were found to target distinct amino acid motifs and partially overlapping protein targets. They also conveyed different effector functions as revealed in an osteoclast activation assay. CONCLUSION: These findings suggest that the high level of cross-reactivity among RA autoreactive B cells is the result of different antigen encounters, possibly at different sites and at different time points. This is consistent with the notion that RA is initiated in one context, such as in the mucosal organs, and thereafter targets other sites, such as the joints.


Assuntos
Motivos de Aminoácidos/imunologia , Anticorpos Antiproteína Citrulinada/imunologia , Artrite Reumatoide/imunologia , Autoantígenos/imunologia , Imunoglobulina G/imunologia , Plasmócitos/imunologia , Anticorpos Monoclonais/imunologia , Autoanticorpos/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carbamilação de Proteínas , Processamento de Proteína Pós-Traducional , Líquido Sinovial/citologia
15.
Inflamm Bowel Dis ; 25(2): 306-316, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30358838

RESUMO

Background: Few studies have investigated the blood proteome of inflammatory bowel disease (IBD). We characterized the serum abundance of proteins encoded at 163 known IBD risk loci and tested these proteins for their biomarker discovery potential. Methods: Based on the Human Protein Atlas (HPA) antibody availability, 218 proteins from genes mapping at 163 IBD risk loci were selected. Targeted serum protein profiles from 49 Crohn's disease (CD) patients, 51 ulcerative colitis (UC) patients, and 50 sex- and age-matched healthy individuals were obtained using multiplexed antibody suspension bead array assays. Differences in relative serum abundance levels between disease groups and controls were examined. Replication was attempted for CD-UC comparisons (including disease subtypes) by including 64 additional patients (33 CD and 31 UC). Antibodies targeting a potentially novel risk protein were validated by paired antibodies, Western blot, immuno-capture mass spectrometry, and epitope mapping. Results: By univariate analysis, 13 proteins mostly related to neutrophil, T-cell, and B-cell activation and function were differentially expressed in IBD patients vs healthy controls, 3 in CD patients vs healthy controls and 2 in UC patients vs healthy controls (q < 0.01). Multivariate analyses further differentiated disease groups from healthy controls and CD subtypes from UC (P < 0.05). Extended characterization of an antibody targeting a novel, discriminative serum marker, the laccase (multicopper oxidoreductase) domain containing 1 (LACC1) protein, provided evidence for antibody on-target specificity. Conclusions: Using affinity proteomics, we identified a set of IBD-associated serum proteins encoded at IBD risk loci. These candidate proteins hold the potential to be exploited as diagnostic biomarkers of IBD.


Assuntos
Biomarcadores/sangue , Proteínas Sanguíneas/análise , Colite Ulcerativa/diagnóstico , Doença de Crohn/diagnóstico , Proteoma/análise , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Colite Ulcerativa/sangue , Doença de Crohn/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
16.
Cell Rep ; 25(2): 478-486.e8, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304686

RESUMO

Cyanobacteria must balance separate demands for energy generation, carbon assimilation, and biomass synthesis. We used shotgun proteomics to investigate proteome allocation strategies in the model cyanobacterium Synechocystis sp. PCC 6803 as it adapted to light and inorganic carbon (Ci) limitation. When partitioning the proteome into seven functional sectors, we find that sector sizes change linearly with growth rate. The sector encompassing ribosomes is significantly smaller than in E. coli, which may explain the lower maximum growth rate in Synechocystis. Limitation of light dramatically affects multiple proteome sectors, whereas the effect of Ci limitation is weak. Carbon assimilation proteins respond more strongly to changes in light intensity than to Ci. A coarse-grained cell economy model generally explains proteome trends. However, deviations from model predictions suggest that the large proteome sectors for carbon and light assimilation are not optimally utilized under some growth conditions and may constrain the proteome space available to ribosomes.


Assuntos
Proteínas de Bactérias/metabolismo , Dióxido de Carbono/farmacologia , Cianobactérias/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Luz , Proteoma/análise , Cianobactérias/efeitos dos fármacos , Cianobactérias/efeitos da radiação , Proteoma/efeitos dos fármacos , Proteoma/efeitos da radiação
17.
Nat Commun ; 9(1): 4130, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297845

RESUMO

There is a need for standardized validation methods for antibody specificity and selectivity. Recently, five alternative validation pillars were proposed to explore the specificity of research antibodies using methods with no need for prior knowledge about the protein target. Here, we show that these principles can be used in a streamlined manner for enhanced validation of research antibodies in Western blot applications. More than 6,000 antibodies were validated with at least one of these strategies involving orthogonal methods, genetic knockdown, recombinant expression, independent antibodies, and capture mass spectrometry analysis. The results show a path forward for efforts to validate antibodies in an application-specific manner suitable for both providers and users.


Assuntos
Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Ensaios de Triagem em Larga Escala/métodos , Estudos de Validação como Assunto , Animais , Western Blotting/métodos , Western Blotting/normas , Ensaios de Triagem em Larga Escala/normas , Humanos , Padrões de Referência , Reprodutibilidade dos Testes
18.
J Proteome Res ; 17(5): 1879-1886, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29631402

RESUMO

A natural way to benchmark the performance of an analytical experimental setup is to use samples of known composition and see to what degree one can correctly infer the content of such a sample from the data. For shotgun proteomics, one of the inherent problems of interpreting data is that the measured analytes are peptides and not the actual proteins themselves. As some proteins share proteolytic peptides, there might be more than one possible causative set of proteins resulting in a given set of peptides and there is a need for mechanisms that infer proteins from lists of detected peptides. A weakness of commercially available samples of known content is that they consist of proteins that are deliberately selected for producing tryptic peptides that are unique to a single protein. Unfortunately, such samples do not expose any complications in protein inference. Hence, for a realistic benchmark of protein inference procedures, there is a need for samples of known content where the present proteins share peptides with known absent proteins. Here, we present such a standard, that is based on E. coli expressed human protein fragments. To illustrate the application of this standard, we benchmark a set of different protein inference procedures on the data. We observe that inference procedures excluding shared peptides provide more accurate estimates of errors compared to methods that include information from shared peptides, while still giving a reasonable performance in terms of the number of identified proteins. We also demonstrate that using a sample of known protein content without proteins with shared tryptic peptides can give a false sense of accuracy for many protein inference methods.


Assuntos
Algoritmos , Benchmarking/métodos , Proteômica/métodos , Homologia de Sequência de Aminoácidos , Benchmarking/normas , Escherichia coli/metabolismo , Humanos , Fragmentos de Peptídeos/análise , Peptídeos/análise , Proteínas/análise , Proteínas/metabolismo , Tripsina/metabolismo
19.
J Proteome Res ; 16(3): 1300-1314, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28121444

RESUMO

The underlying molecular mechanisms of autoimmune diseases are poorly understood. To unravel the autoimmune processes across diseases, comprehensive and unbiased analyses of proteins targets recognized by the adaptive immune system are needed. Here we present an approach starting from high-density peptide arrays to characterize autoantibody repertoires and to identify new autoantigens. A set of ten plasma and serum samples from subjects with multiple sclerosis, narcolepsy, and without any disease diagnosis were profiled on a peptide array representing the whole proteome, hosting 2.2 million 12-mer peptides with a six amino acid lateral shift. On the basis of the IgG reactivities found on these whole-proteome peptide microarrays, a set of 23 samples was then studied on a targeted array with 174 000 12-mer peptides of single amino acid lateral shift. Finally, verification of IgG reactivities was conducted with a larger sample set (n = 448) using the bead-based peptide microarrays. The presented workflow employed three different peptide microarray formats to discover and resolve the epitopes of human autoantibodies and revealed two potentially new autoantigens: MAP3K7 in multiple sclerosis and NRXN1 in narcolepsy. The presented strategy provides insights into antibody repertoire reactivity at a peptide level and may accelerate the discovery and validation of autoantigens in human diseases.


Assuntos
Autoanticorpos/sangue , Esclerose Múltipla/sangue , Narcolepsia/sangue , Análise Serial de Proteínas/métodos , Proteoma/análise , Adolescente , Adulto , Idoso , Autoantígenos/sangue , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular Neuronais/sangue , Criança , Feminino , Humanos , MAP Quinase Quinase Quinases/sangue , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/sangue , Moléculas de Adesão de Célula Nervosa , Adulto Jovem
20.
Mol Syst Biol ; 12(10): 883, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27951527

RESUMO

An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP) conversion factor independent of the tissue type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands of protein copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Linhagem Celular , Expressão Gênica , Humanos , Proteoma/genética , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...