Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38006057

RESUMO

Microarray patches (MAPs) have the potential to be a safer, more acceptable, easier-to-use, and more cost-effective means for the administration of vaccines than injection by needle and syringe. Here, we report findings from a randomized, partially double-blinded, placebo-controlled Phase I trial using the Vaxxas high-density MAP (HD-MAP) to deliver a measles rubella (MR) vaccine. Healthy adults (N = 63, age 18-50 years) were randomly assigned 1:1:1:1 to four groups: uncoated (placebo) HD-MAPs, low-dose MR HD-MAPs (~3100 median cell-culture infectious dose [CCID50] measles, ~4300 CCID50 rubella); high-dose MR-HD-MAPs (~9300 CCID50 measles, ~12,900 CCID50 rubella); or a sub-cutaneous (SC) injection of an approved MR vaccine, MR-Vac (≥1000 CCID50 per virus). The MR vaccines were stable and remained viable on HD-MAPs when stored at 2-8 °C for at least 24 months. When MR HD-MAPs stored at 2-8 °C for 24 months were transferred to 40 °C for 3 days in a controlled temperature excursion, loss of potency was minimal, and MR HD-MAPs still met World Health Organisation (WHO) specifications. MR HD-MAP vaccination was safe and well-tolerated; any systemic or local adverse events (AEs) were mild or moderate. Similar levels of binding and neutralizing antibodies to measles and rubella were induced by low-dose and high-dose MR HD-MAPs and MR-Vac. The neutralizing antibody seroconversion rates on day 28 after vaccination for the low-dose HD-MAP, high-dose HD-MAP and MR-Vac groups were 37.5%, 18.8% and 35.7%, respectively, for measles, and 37.5%, 25.0% and 35.7%, respectively, for rubella. Most participants were seropositive for measles and rubella antibodies at baseline, which appeared to negatively impact the number of participants that seroconverted to vaccines delivered by either route. The data reported here suggest HD-MAPs could be a valuable means for delivering MR-vaccine to hard-to-reach populations and support further development. Clinical trial registry number: ACTRN12621000820808.

2.
BMJ Glob Health ; 8(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37827725

RESUMO

BACKGROUND: Microarray patches (MAPs) deliver vaccines to the epidermis and the upper dermis, where abundant immune cells reside. There are several potential benefits to using MAPs, including reduced sharps risk, thermostability, no need for reconstitution, tolerability and self-administration. We aimed to explore and evaluate the immunogenicity, safety, usability and acceptability of MAPs for vaccination. METHODS: We searched CINAHL, Cochrane Library, Ovid Embase, Ovid MEDLINE and Web of Science from inception to January 2023. Eligibility criteria included all research studies in any language, which examined microarrays or microneedles intended or used for vaccination and explored immunogenicity, safety, usability or acceptability in their findings. Two reviewers conducted title and abstract screening, full-text reviewing and data extraction. RESULTS: Twenty-two studies were included (quantitative=15, qualitative=2 and mixed methods=5). The risk of bias was mostly low, with two studies at high risk of bias. Four clinical trials were included, three using influenza antigens and one with Japanese encephalitis delivered by MAP. A meta-analysis indicated similar or higher immunogenicity in influenza MAPs compared with needle and syringe (N&S) (standardised mean difference=10.80, 95% CI: 3.51 to 18.08, p<0.00001). There were no significant differences in immune cell function between MAPs and N&S. No serious adverse events were reported in MAPs. Erythema was more common after MAP application than N&S but was brief and well tolerated. Lower pain scores were usually reported after MAP application than N&S. Most studies found MAPs easy to use and highly acceptable among healthcare professionals, laypeople and parents. CONCLUSION: MAPs for vaccination were safe and well tolerated and evoked similar or enhanced immunogenicity than N&S, but further research is needed. Vaccine uptake may be increased using MAPs due to less pain, enhanced thermostability, layperson and self-administration. MAPs could benefit at-risk groups and low and middle-income countries. PROSPERO REGISTRATION NUMBER: CRD42022323026.


Assuntos
Influenza Humana , Vacinas , Humanos , Vacinação , Dor/etiologia , Dor/prevenção & controle
3.
PLoS One ; 16(7): e0255282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34329337

RESUMO

Microarray patches (MAPs) have the potential to be a safer, more acceptable, easier to use and more cost-effective method for administration of vaccines when compared to the needle and syringe. Since MAPs deliver vaccine to the dermis and epidermis, a degree of local immune response at the site of application is expected. In a phase 1 clinical trial (ACTRN 12618000112268), the Vaxxas high-density MAP (HD-MAP) was used to deliver a monovalent, split inactivated influenza virus vaccine into the skin. HD-MAP immunisation led to significantly enhanced humoral responses on day 8, 22 and 61 compared with IM injection of a quadrivalent commercial seasonal influenza vaccine (Afluria Quadrivalent®). Here, the aim was to analyse cellular responses to HD-MAPs in the skin of trial subjects, using flow cytometry and immunohistochemistry. HD-MAPs were coated with a split inactivated influenza virus vaccine (A/Singapore/GP1908/2015 [H1N1]), to deliver 5 µg haemagglutinin (HA) per HD-MAP. Three HD-MAPs were applied to the volar forearm (FA) of five healthy volunteers (to achieve the required 15 µg HA dose), whilst five control subjects received three uncoated HD-MAPs (placebo). Local skin response was recorded for over 61 days and haemagglutination inhibition antibody titres (HAI) were assessed on days 1, 4, 8, 22, and 61. Skin biopsies were taken before (day 1), and three days after HD-MAP application (day 4) and analysed by flow-cytometry and immunohistochemistry to compare local immune subset infiltration. HD-MAP vaccination with 15 µg HA resulted in significant HAI antibody titres compared to the placebo group. Application of uncoated placebo HD-MAPs resulted in mild erythema and oedema in most subjects, that resolved by day 4 in 80% of subjects. Active, HA-coated HD-MAP application resulted in stronger erythema responses on day 4, which resolved between days 22-61. Overall, these erythema responses were accompanied by an influx of immune cells in all subjects. Increased cell infiltration of CD3+, CD4+, CD8+ T cells as well as myeloid CD11b+ CD11c+ and non-myeloid CD11b- dendritic cells were observed in all subjects, but more pronounced in active HD-MAP groups. In contrast, CD19+/CD20+ B cell counts remained unchanged. Key limitations include the use of an influenza vaccine, to which the subjects may have had previous exposure. Different results might have been obtained with HD-MAPs inducing a primary immune response. In conclusion, influenza vaccine administered to the forearm (FA) using the HD-MAP was well-tolerated and induced a mild to moderate skin response with lymphocytic infiltrate at the site of application.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Sistemas de Liberação de Medicamentos , Imunidade Celular/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Pele/imunologia , Adulto , Antígenos CD/imunologia , Feminino , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
5.
NPJ Vaccines ; 5(1): 74, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802413

RESUMO

We evaluated vaccination against Streptococcus pyogenes with the candidate vaccine, J8-DT, delivered by a high-density microarray patch (HD-MAP). We showed that vaccination with J8-DT eluted from a coated HD-MAP (J8-DT/HD-MAP), induced similar total IgG responses to that generated by vaccination with J8-DT adjuvanted with Alum (J8-DT/Alum). We evaluated the effect of dose reduction and the number of vaccinations on the antibody response profile of vaccinated mice. A reduction in the number of vaccinations (from three to two) with J8-DT/HD-MAP induced comparable antibody responses to three vaccinations with intramuscular J8-DT/Alum. Vaccine-induced protection against an S. pyogenes skin challenge was assessed. J8-DT/HD-MAP vaccination led to a significant reduction in the number of S. pyogenes colony forming units in skin (92.9%) and blood (100%) compared to intramuscular vaccination with unadjuvanted J8-DT. The protection profile was comparable to that of intramuscular J8-DT/Alum. J8-DT/HD-MAP induced a shift in the antibody isotype profile, with a bias towards Th1-related isotypes, compared to J8-DT/Alum (Th2 bias). Based on the results of this study, the use of J8-DT/HD-MAP should be considered in future clinical development and control programs against S. pyogenes. Furthermore, the innate characteristics of the technology, such as vaccine stability and increased coverage, ease of use, reduction of sharp waste and the potential reduction of dose may be advantageous compared to current vaccination methods.

6.
PLoS Med ; 17(3): e1003024, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181756

RESUMO

BACKGROUND: The Vaxxas high-density microarray patch (HD-MAP) consists of a high density of microprojections coated with vaccine for delivery into the skin. Microarray patches (MAPs) offer the possibility of improved vaccine thermostability as well as the potential to be safer, more acceptable, easier to use, and more cost-effective for the administration of vaccines than injection by needle and syringe (N&S). Here, we report a phase I trial using the Vaxxas HD-MAP to deliver a monovalent influenza vaccine that was to the best of our knowledge the first clinical trial to evaluate the safety, tolerability, and immunogenicity of lower doses of influenza vaccine delivered by MAPs. METHODS AND FINDINGS: HD-MAPs were coated with a monovalent, split inactivated influenza virus vaccine containing A/Singapore/GP1908/2015 H1N1 haemagglutinin (HA). Between February 2018 and March 2018, 60 healthy adults (age 18-35 years) in Melbourne, Australia were enrolled into part A of the study and vaccinated with either: HD-MAPs delivering 15 µg of A/Singapore/GP1908/2015 H1N1 HA antigen (A-Sing) to the volar forearm (FA); uncoated HD-MAPs; intramuscular (IM) injection of commercially available quadrivalent influenza vaccine (QIV) containing A/Singapore/GP1908/2015 H1N1 HA (15 µg/dose); or IM injection of H1N1 HA antigen (15 µg/dose). After 22 days' follow-up and assessment of the safety data, a further 150 healthy adults were enrolled and randomly assigned to 1 of 9 treatment groups. Participants (20 per group) were vaccinated with HD-MAPs delivering doses of 15, 10, 5, 2.5, or 0 µg of HA to the FA or 15 µg HA to the upper arm (UA), or IM injection of QIV. The primary objectives of the study were safety and tolerability. Secondary objectives were to assess the immunogenicity of the influenza vaccine delivered by HD-MAP. Primary and secondary objectives were assessed for up to 60 days post-vaccination. Clinical staff and participants were blind as to which HD-MAP treatment was administered and to administration of IM-QIV-15 or IM-A/Sing-15. All laboratory investigators were blind to treatment and participant allocation. Two further groups in part B (5 participants per group), not included in the main safety and immunological analysis, received HD-MAPs delivering 15 µg HA or uncoated HD-MAPs applied to the forearm. Biopsies were taken on days 1 and 4 for analysis of the cellular composition from the HD-MAP application sites. The vaccine coated onto HD-MAPs was antigenically stable when stored at 40°C for at least 12 months. HD-MAP vaccination was safe and well tolerated; any systemic or local adverse events (AEs) were mild or moderate. Observed systemic AEs were mostly headache or myalgia, and local AEs were application-site reactions, usually erythema. HD-MAP administration of 2.5 µg HA induced haemagglutination inhibition (HAI) and microneutralisation (MN) titres that were not significantly different to those induced by 15 µg HA injected IM (IM-QIV-15). HD-MAP delivery resulted in enhanced humoral responses compared with IM injection with higher HAI geometric mean titres (GMTs) at day 8 in the MAP-UA-15 (GMT 242.5, 95% CI 133.2-441.5), MAP-FA-15 (GMT 218.6, 95% CI 111.9-427.0), and MAP-FA-10 (GMT 437.1, 95% CI 254.3-751.3) groups compared with IM-QIV-15 (GMT 82.8, 95% CI 42.4-161.8), p = 0.02, p = 0.04, p < 0.001 for MAP-UA-15, MAP-FA-15, and MAP-FA-10, respectively. Higher titres were also observed at day 22 in the MAP-FA-10 (GMT 485.0, 95% CI 301.5-780.2, p = 0.001) and MAP-UA-15 (367.6, 95% CI 197.9-682.7, p = 0.02) groups compared with the IM-QIV-15 group (GMT 139.3, 95% CI 79.3-244.5). Results from a panel of exploratory immunoassays (antibody-dependent cellular cytotoxicity, CD4+ T-cell cytokine production, memory B cell (MBC) activation, and recognition of non-vaccine strains) indicated that, overall, Vaxxas HD-MAP delivery induced immune responses that were similar to, or higher than, those induced by IM injection of QIV. The small group sizes and use of a monovalent influenza vaccine were limitations of the study. CONCLUSIONS: Influenza vaccine coated onto the HD-MAP was stable stored at temperatures up to 40°C. Vaccination using the HD-MAP was safe and well tolerated and resulted in immune responses that were similar to or significantly enhanced compared with IM injection. Using the HD-MAP, a 2.5 µg dose (1/6 of the standard dose) induced HAI and MN titres similar to those induced by 15 µg HA injected IM. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR.org.au), trial ID 108 ACTRN12618000112268/U1111-1207-3550.


Assuntos
Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Vacinação , Administração Cutânea , Adolescente , Adulto , Anticorpos Antivirais/sangue , Austrália , Células Cultivadas , Estabilidade de Medicamentos , Feminino , Humanos , Imunoglobulina A/metabolismo , Vacinas contra Influenza/efeitos adversos , Influenza Humana/imunologia , Influenza Humana/virologia , Injeções Intramusculares , Masculino , Saliva/imunologia , Saliva/virologia , Linfócitos T/imunologia , Linfócitos T/virologia , Fatores de Tempo , Adesivo Transdérmico , Resultado do Tratamento , Vacinação/efeitos adversos , Adulto Jovem
7.
Vaccine ; 36(26): 3779-3788, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29779922

RESUMO

BACKGROUND: Injection using needle and syringe (N&S) is the most widely used method for vaccination, but requires trained healthcare workers. Fear of needles, risk of needle-stick injury, and the need to reconstitute lyophilised vaccines, are also drawbacks. The Nanopatch (NP) is a microarray skin patch comprised of a high-density array of microprojections dry-coated with vaccine that is being developed to address these shortcomings. Here we report a randomised, partly-blinded, placebo-controlled trial that represents the first use in humans of the NP to deliver a vaccine. METHODS: Healthy volunteers were vaccinated once with one of the following: (1) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg haemagglutinin (HA) per dose), applied to the volar forearm (NP-HA/FA), n = 15; (2) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg HA per dose), applied to the upper arm (NP-HA/UA), n = 15; (3) Fluvax® 2016 containing 15 µg of the same H1N1 HA antigen injected intramuscularly (IM) into the deltoid (IM-HA/D), n = 15; (4) NPs coated with excipients only, applied to the volar forearm (NP-placebo/FA), n = 5; (5) NPs coated with excipients only applied to the upper arm (NP-placebo/UA), n = 5; or (6) Saline injected IM into the deltoid (IM-placebo/D), n = 5. Antibody responses at days 0, 7, and 21 were measured by haemagglutination inhibition (HAI) and microneutralisation (MN) assays. FINDINGS: NP vaccination was safe and acceptable; all adverse events were mild or moderate. Most subjects (55%) receiving patch vaccinations (HA or placebo) preferred the NP compared with their past experience of IM injection with N&S (preferred by 24%). The antigen-vaccinated groups had statistically higher HAI titres at day 7 and 21 compared with baseline (p < 0.0001), with no statistical differences between the treatment groups (p > 0.05), although the group sizes were small. The geometric mean HAI titres at day 21 for the NP-HA/FA, NP-HA/UA and IM-HA/D groups were: 335 (189-593 95% CI), 160 (74-345 95% CI), and 221 (129-380 95% CI) respectively. A similar pattern of responses was seen with the MN assays. Application site reactions were mild or moderate, and more marked with the influenza vaccine NPs than with the placebo or IM injection. INTERPRETATION: Influenza vaccination using the NP appeared to be safe, and acceptable in this first time in humans study, and induced similar immune responses to vaccination by IM injection.


Assuntos
Administração Cutânea , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Adolescente , Adulto , Anticorpos Antivirais/sangue , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Voluntários Saudáveis , Testes de Inibição da Hemaglutinação , Humanos , Vacinas contra Influenza/efeitos adversos , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Aceitação pelo Paciente de Cuidados de Saúde , Placebos/administração & dosagem , Método Simples-Cego , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
8.
Drug Dev Ind Pharm ; 34(1): 95-106, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18214761

RESUMO

AIM: Carbamazepine and dipyridamole are class II compounds (BCS) whose oral bioavailability is limited by poor solubility. The use of glass solutions to improve the bioavailability of this class of compound has been an area of research for a number of years. The influence of polymer parameters (Tg, hydrophilicity, solubility parameter, and ability to hydrogen bond) on glass solution properties is investigated. METHODS: Carbamazepine and dipyridamole glass solutions are prepared with PVP/VA 64 and PVP/VA 37 by spray drying and melt extrusion. The products are then characterized by XRPD, thermal, and spectroscopic methods. Yield, physical stability, and dissolution profiles are also assessed. RESULTS: The properties of the polymer greatly influenced the ability to produce glass solutions. With decreases in Tg and hydrophilicity, melt extrusion became the more viable of the two preparative techniques. Although glass solutions were successfully prepared, the greater the difference in component solubility parameter, the less physically stable the formulation. CONCLUSION: Consideration must be given to the characteristics of the polymer when selecting for glass solution formulation. Although a number of process parameters can be varied for melt extrusion and spray drying, their ability to overcome fundamental differences in the physical parameters discussed is limited.


Assuntos
Carbamazepina/química , Dipiridamol/química , Pirrolidinas/química , Compostos de Vinila/química , Carbamazepina/administração & dosagem , Dipiridamol/administração & dosagem , Estabilidade de Medicamentos , Solubilidade , Tecnologia Farmacêutica
9.
Int J Pharm ; 336(1): 22-34, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17174493

RESUMO

The aim of this study was to investigate the influence of the manufacturing process on the physicochemical properties of three poorly water soluble compounds (carbamazepine, dipyridamole, and indomethacin) when processed with a polymer (polyvinylpyrrolidone K30 (PVP)) at a 1:2 drug to polymer ratio. Melt extrusion, spray drying, and ball milling techniques were used to prepare glass solutions. Product homogeneity, dissolution, physical stability, and drug/polymer interactions were investigated. Particular attention was paid to solid phase analysis using XRPD, modulated temperature DSC, optical microscopy, and Raman microscopy and the importance of using a combination of techniques was demonstrated. The latter technique when applied to freshly ball milled samples exhibited the presence of drug and polymer rich areas, indicating that complete glass solution formation had not occurred. The three compounds produced products with differing physical stability with indomethacin proving the most physically stable. These differences in physical stability were attributed to hydrogen bonding of drug and polymer. The manufacturing technique did not influence physical stability, but it did affect dissolution. The dissolution of the spray-dried material was generally poor, compared to melt extruded and ball milled products. This was probably due to rapid dissolution of PVP from the small particles of the spray-dried products.


Assuntos
Carbamazepina/química , Química Farmacêutica/métodos , Dipiridamol/química , Indometacina/química , Povidona/química , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Ligação de Hidrogênio , Microscopia Eletrônica de Varredura , Microscopia de Polarização , Tamanho da Partícula , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Termogravimetria , Temperatura de Transição , Água/química , Difração de Raios X
10.
Magn Reson Chem ; 43(11): 881-92, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16059964

RESUMO

We have characterised the stable polymorphic forms of two drug molecules, indomethacin (1) and nifedipine (2) by 13C CPMAS NMR and the resonances have been assigned. The signal for the C-Cl carbon of indomethacin has been studied as a function of applied magnetic field, and the observed bandshapes have been simulated. Variable-temperature 1H relaxation measurements of static samples have revealed a T1rho minimum for indomethacin at 17.8 degrees C. The associated activation energy is 38 kJ mol(-1). The relevant motion is probably an internal rotation and it is suggested that this involves the C-OCH3 group. Since the two drug compounds are potential candidates for formulation in the amorphous state, we have examined quench-cooled melts in detail by variable-temperature 13C and 1H NMR. There is a change in slope for T1H and T1rhoH at the glass transition temperature (Tg) for indomethacin, but this occurs a few degrees below Tg for nifedipine, which is perhaps relevant to the lower real-time stability of the amorphous form for the latter compound. Comparison of relaxation time data for the crystalline and amorphous forms of each compound reveals a greater difference for nifedipine than for indomethacin, which again probably relates to real-time stabilities. Recrystallisation of the two drugs has been followed by proton bandshape measurements at higher temperatures. It is shown that, under the conditions of the experiments, recrystallisation of nifedipine can be detected already at 70 degrees C, whereas this does not occur until 110 degrees C for indomethacin. The effect of crushing the amorphous samples has been studied by 13C NMR; nifedipine recrystallises but indomethacin does not. The results were supported by DSC, powder XRD, FTIR and solution-state NMR measurements.


Assuntos
Indometacina/química , Espectroscopia de Ressonância Magnética/métodos , Nifedipino/química , Temperatura , Isótopos de Carbono , Espectroscopia de Ressonância Magnética/normas , Estrutura Molecular , Prótons , Padrões de Referência , Difração de Raios X
11.
J Pharm Sci ; 94(9): 1998-2012, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16052554

RESUMO

A number of studies in the literature have reported on the use of different preparative techniques to convert crystalline pharmaceutical compounds into the amorphous form. However, very few direct comparisons of different preparative techniques using the same drugs are available. The purpose of this study was to determine the influence of two techniques: quench cooling and ball milling on four structurally diverse pharmaceutical drugs. Dipyridamole, carbamazepine, glibenclamide, and indomethacin were converted to the amorphous form by (a) quench cooling of the drug melt and (b) ball milling. The chemical purity and physical form of the products was determined using diffractometric, spectroscopic, and thermal analytical techniques. Products were analysed immediately post preparation and after storage under different stability conditions. Quench cooling of the melt resulted in amorphous conversion of all four compounds. However with glibenclamide, quench cooling resulted in unacceptable chemical degradation whereas ball milling of glibenclamide resulted in a change in the keto-enol tautomerism at the aryl amide moiety of this drug. Ball milling resulted in predominantly amorphous products for all compounds except carbamazepine. Ball milling of carbamazepine resulted in a polymorphic transition of the starting material to form III. Physical stability studies showed that irrespective of preparative technique and storage conditions all samples showed at least partial reversion to the crystalline state after storage. Quench cooling of drug melts may be of use as a preparative technique however it can result in chemical degradation. Ball milling may also be of use as a preparative technique however its effectiveness is dependent on the unit cell structure of the compound.


Assuntos
Carbamazepina/química , Dipiridamol/química , Glibureto/química , Indometacina/química , Tecnologia Farmacêutica , Química Farmacêutica , Cristalização , Estabilidade de Medicamentos , Difração de Pó , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Tecnologia Farmacêutica/métodos , Temperatura , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...