Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Intern Med ; 289(1): 53-68, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32794238

RESUMO

BACKGROUND: The metabolism of tryptophan (Trp) along the kynurenine pathway has been shown to carry strong immunoregulatory properties. Several experimental studies indicate that this pathway is a major regulator of vascular inflammation and influences atherogenesis. Knowledge of the role of this pathway in human atherosclerosis remains incomplete. OBJECTIVES: In this study, we performed a multiplatform analysis of tissue samples, in vitro and in vivo functional assays to elucidate the potential role of the kynurenine pathway in human atherosclerosis. METHODS AND RESULTS: Comparison of transcriptomic data from carotid plaques and control arteries revealed an upregulation of enzymes within the quinolinic branch of the kynurenine pathway in the disease state, whilst the branch leading to the formation of kynurenic acid (KynA) was downregulated. Further analyses indicated that local inflammatory responses are closely tied to the deviation of the kynurenine pathway in the vascular wall. Analysis of cerebrovascular symptomatic and asymptomatic carotid stenosis data showed that the downregulation of KynA branch enzymes and reduced KynA production were associated with an increased probability of patients to undergo surgery due to an unstable disease. In vitro, we showed that KynA-mediated signalling through aryl hydrocarbon receptor (AhR) is a major regulator of human macrophage activation. Using a mouse model of peritoneal inflammation, we showed that KynA inhibits leukocyte recruitment. CONCLUSIONS: We have found that a deviation in the kynurenine pathway is associated with an increased probability of developing symptomatic unstable atherosclerotic disease. Our study suggests that KynA-mediated signalling through AhR is an important mechanism involved in the regulation of vascular inflammation.


Assuntos
Doenças das Artérias Carótidas/metabolismo , Cinurenina/metabolismo , Triptofano/metabolismo , Regulação para Baixo , Humanos , Inflamação/metabolismo , Ácido Cinurênico/metabolismo , Cinurenina/sangue , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Triptofano/sangue , Regulação para Cima
2.
J Mol Endocrinol ; 62(4): 159-168, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30917339

RESUMO

Modified lipoproteins can negatively affect beta cell function and survival. However, the mechanisms behind interactions of modified lipoproteins with beta cells - and in particular, relationships to increased uptake - are only partly clarified. By over-expressing the scavenger receptor CD36 (Tet-on), we increased the uptake of fluorescent low-density modified lipoprotein (oxLDL) into insulin-secreting INS-1 cells. The magnitude of uptake followed the degree of CD36 over-expression. CD36 over-expression increased concomitant efflux of 3H-cholesterol in proportion to the cellular contents of 3H-cholesterol. Exposure to concentrations of oxLDL from 20 to 100 µg/mL dose-dependently increased toxicity (evaluated by MTT) as well as apoptosis. However, the increased uptake of oxLDL due to CD36 over-expression did not exert additive effects on oxLDL toxicity - neither on viability, nor on glucose-induced insulin release and cellular content. Reciprocally, blocking CD36 receptors by Sulfo-N-Succinimidyl Oleate decreased the uptake of oxLDL but did not diminish the toxicity. Pancreatic islets of CD36-/- mice displayed reduced uptake of 3H-cholesterol-labeled oxLDL vs wild type but similar toxicity to oxLDL. OxLDL was found to increase the expression of CD36 in islets and INS-1 cells. In summary, given the experimental conditions, our results indicate that (1) increased uptake of oxLDL is not responsible for toxicity of oxLDL, (2) increased efflux of the cholesterol moiety of oxLDL counterbalances, at least in part, increased uptake and (3) oxLDL participates in the regulation of CD36 in pancreatic islets and in INS-1 cells.


Assuntos
Células Secretoras de Insulina/metabolismo , Lipoproteínas LDL/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Colesterol/metabolismo , Doxiciclina/farmacologia , Citometria de Fluxo , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Masculino , Camundongos , Microscopia Confocal , Ratos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...