Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34788213

RESUMO

Competitive behaviours of plant growth promoting rhizobacteria (PGPR) are integral to their ability to colonize and persist on plant roots and outcompete phytopathogenic fungi, oomycetes and bacteria. PGPR engage in a range of antagonistic behaviours that have been studied in detail, such as the production and secretion of compounds inhibitory to other microbes. In contrast, their defensive activities that enable them to tolerate exposure to inhibitory compounds produced by their neighbours are less well understood. In this study, the genes involved in the Pseudomonas protegens Pf-5 response to metabolites from eight diverse rhizosphere competitor organisms, Fusarium oxysporum, Rhizoctonia solani, Gaeumannomyces graminis var. tritici, Pythium spinosum, Bacillus subtilis QST713, Pseudomonas sp. Q2-87, Streptomyces griseus and Streptomyces bikiniensis subspecies bikiniensi, were examined. Proximity induced excreted metabolite responses were confirmed for Pf-5 with all partner organisms through HPLC before culturing a dense Pf-5 transposon mutant library adjacent to each of these microbes. This was followed by transposon-directed insertion site sequencing (TraDIS), which identified genes that influence Pf-5 fitness during these competitive interactions. A set of 148 genes was identified that were associated with increased fitness during competition, including cell surface modification, electron transport, nucleotide metabolism, as well as regulatory genes. In addition, 51 genes were identified for which loss of function resulted in fitness gains during competition. These included genes involved in flagella biosynthesis and cell division. Considerable overlap was observed in the set of genes observed to provide a fitness benefit during competition with all eight test organisms, indicating commonalities in the competitive response to phylogenetically diverse micro-organisms and providing new insight into competitive processes likely to take place in the rhizosphere.


Assuntos
Oomicetos , Rizosfera , Bacillus subtilis , Pseudomonas/genética
2.
J Bacteriol ; 203(7)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33257523

RESUMO

Gene essentiality studies have been performed on numerous bacterial pathogens, but essential gene sets have been determined for only a few plant-associated bacteria. Pseudomonas protegens Pf-5 is a plant-commensal, biocontrol bacterium that can control disease-causing pathogens on a wide range of crops. Work on Pf-5 has mostly focused on secondary metabolism and biocontrol genes, but genome-wide approaches such as high-throughput transposon mutagenesis have not yet been used for this species. In this study, we generated a dense P. protegens Pf-5 transposon mutant library and used transposon-directed insertion site sequencing (TraDIS) to identify 446 genes essential for growth on rich media. Genes required for fundamental cellular machinery were enriched in the essential gene set, while genes related to nutrient biosynthesis, stress responses, and transport were underrepresented. The majority of Pf-5 essential genes were part of the P. protegens core genome. Comparison of the essential gene set of Pf-5 with those of two plant-associated pseudomonads, P. simiae and P. syringae, and the well-studied opportunistic human pathogen P. aeruginosa PA14 showed that the four species share a large number of essential genes, but each species also had uniquely essential genes. Comparison of the Pf-5 in silico-predicted and in vitro-determined essential gene sets highlighted the essential cellular functions that are over- and underestimated by each method. Expanding essentiality studies into bacteria with a range of lifestyles may improve our understanding of the biological processes important for bacterial survival and growth.IMPORTANCE Essential genes are those crucial for survival or normal growth rates in an organism. Essential gene sets have been identified in numerous bacterial pathogens but only a few plant-associated bacteria. Employing genome-wide approaches, such as transposon insertion sequencing, allows for the concurrent analyses of all genes of a bacterial species and rapid determination of essential gene sets. We have used transposon insertion sequencing to systematically analyze thousands of Pseudomonas protegens Pf-5 genes and gain insights into gene functions and interactions that are not readily available using traditional methods. Comparing Pf-5 essential genes with those of three other pseudomonads highlights how gene essentiality varies between closely related species.


Assuntos
Proteínas de Bactérias/genética , Genes Essenciais , Pseudomonas/genética , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Biblioteca Gênica , Genoma Bacteriano , Mutagênese Insercional , Plantas/microbiologia , Pseudomonas/metabolismo
3.
Physiol Plant ; 166(1): 134-147, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30838662

RESUMO

To better understand the coordination between dark and light reactions during the transition from C3 to C4 photosynthesis, we optimized a method for separating thylakoids from mesophyll (MC) and bundle sheath cells (BSCs) across different plant species. We grew six Paniceae grasses including representatives from the C3 , C3 -C4 and C4 photosynthetic types and all three C4 biochemical subtypes [nicotinamide adenine dinucleotide phosphate-dependent malic enzyme (NADP-ME), nicotinamide adenine dinucleotide-dependent malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PEPCK)] in addition to Zea mays under control conditions (1000 µmol quanta m-2  s-1 and 400 ppm of CO2 ). Proteomics analysis of thylakoids under native conditions, using blue native polyacrylamide gel electrophoresis followed by liquid chromatography-mass spectrometry (LC-MS), demonstrated the presence of subunits of all light-reaction-related complexes in all species and cell types. C4 NADP-ME species showed a higher photosystems I/II ratio and a clear accumulation of the NADH dehydrogenase-like complexes in BSCs, while Cytb6 f was more abundant in BSCs of C4 NAD-ME species. The C4 PEPCK species showed no clear differences between cell types. Our study presents, for the first time, a good separation between BSC and MC for a C3 -C4 intermediate grass which did not show noticeable differences in the distribution of the thylakoid complexes. For the NADP-ME species Panicum antidotale, growth at glacial CO2 (180 ppm of CO2 ) had no effect on the distribution of the light-reaction complexes, while growth at low light (200 µmol quanta m-2  s-1 ) promoted the accumulation of light-harvesting proteins in both cell types. These results add to our understanding of thylakoid distribution across photosynthetic types and subtypes, and introduce thylakoid distribution between the MC and BSC of a C3 -C4 intermediate species.


Assuntos
Células do Mesofilo/metabolismo , Poaceae/metabolismo , Tilacoides/metabolismo , Malato Desidrogenase/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese/fisiologia , Poaceae/fisiologia
4.
Eukaryot Cell ; 13(1): 10-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24058169

RESUMO

Since its first description, Chromera velia has attracted keen interest as the closest free-living relative of parasitic Apicomplexa. The life cycle of this unicellular alga is complex and involves a motile biflagellate form. Flagella are thought to be formed in the cytoplasm, a rare phenomenon shared with Plasmodium in which the canonical mode of flagellar assembly, intraflagellar transport, is dispensed with. Here we demonstrate the expression of intraflagellar transport components in C. velia, answering the question of whether this organism has the potential to assemble flagella via the canonical route. We have developed and characterized a culturing protocol that favors the generation of flagellate forms. From this, we have determined a marked shift in the mode of daughter cell production from two to four daughter cells per division as a function of time after passage. We conduct an ultrastructural examination of the C. velia flagellate form by using serial TEM and show that flagellar biogenesis in C. velia occurs prior to cytokinesis. We demonstrate a close association of the flagellar apparatus with a complex system of apical structures, including a micropore, a conoid, and a complex endomembrane system reminiscent of the apical complex of parasitic apicomplexans. Recent work has begun to elucidate the possible flagellar origins of the apical complex, and we show that in C. velia these structures are contemporaneous within a single cell and share multiple connections. We propose that C. velia therefore represents a vital piece in the puzzle of the origins of the apical complex.


Assuntos
Apicomplexa/ultraestrutura , Flagelos/ultraestrutura , Apicomplexa/genética , Apicomplexa/fisiologia , Transporte Biológico , Divisão Celular , Flagelos/metabolismo , Filogenia
5.
FEMS Microbiol Ecol ; 88(1): 121-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24372150

RESUMO

The alveolate microalga Chromera velia is an evolutionarily significant organism, representing the closest photosynthetic relative of the parasitic Apicomplexa. Chromera velia has been detected in and isolated from several stony corals and can be readily cultured in vitro under strictly autotrophic conditions. However, little is known about the ecology of this organism in the coral holobiont, an environment in which it could potentially access abundant organic carbon sources. To understand the response of C. velia to ecologically relevant organic compounds in vitro, we tested a mixotrophic culture strategy by supplementing inorganic f-medium with sugars, sugar-alcohols, organic acids and amino acids. For 15 of the 18 tested growth media, culture growth rate was significantly higher than that of strictly autotrophic cultures, and in three of these, a significant increase in maximum culture density was observed. In cultures supplemented with glutamate or glycine, the chlorophyll content per cell was up to 11-fold higher than cultures grown in standard inorganic media. Together, the in vitro culture growth and pigment responses demonstrate an ability to respond to nutritional resources when available. We propose that C. velia is a facultative opportunist in environments similarly enriched in such organic compounds, such as the coral holobiont.


Assuntos
Alveolados/crescimento & desenvolvimento , Recifes de Corais , Alveolados/isolamento & purificação , Alveolados/fisiologia , Animais , Antozoários/fisiologia , Clorofila/metabolismo , Meios de Cultura/química , Fotossíntese
6.
FEMS Microbiol Lett ; 328(2): 144-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22211939

RESUMO

Chromera velia is evolutionarily the closest free-living and photosynthetic organism to the medically important obligatory parasitic apicomplexans that cause diseases including malaria and toxoplasmosis. In this study, a novel oligonucleotide probe targeting C. velia's small subunit ribosomal RNA was designed. To enable usage of this probe as a detection tool, a fluorescence in situ hybridization (FISH) protocol was optimized. The results obtained showed that when used in combination, the C. velia CV1 probe and optimized FISH protocol enabled efficient detection of C. velia in culture. This new technique will allow a better understanding of the ecological role of C. velia within the coral microhabitat.


Assuntos
Antozoários/parasitologia , Apicomplexa/isolamento & purificação , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/química , Animais , Apicomplexa/química , Apicomplexa/genética , Apicomplexa/crescimento & desenvolvimento , Sequência de Bases , Meios de Cultura/química , DNA/química , DNA/isolamento & purificação , RNA Ribossômico/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...