Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 219: 115932, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37989413

RESUMO

Bitter taste receptors (T2R) are a subfamily of G protein-coupled receptors that enable humans to detect aversive and toxic substances. The ability to discern bitter compounds varies between individuals and is attributed mainly to naturally occurring T2R polymorphisms. T2Rs are also expressed in numerous non-gustatory tissues, including the heart, indicating potential contributions to cardiovascular physiology. In this study. T2Rs that have previously been identified in human cardiac tissues (T2Rs - 10, 14, 30, 31, 46 and 50) and their naturally occurring polymorphisms were functionally characterised. The ligand-dependent signaling responses of some T2R variants were completely abolished (T2R30 Leu252 and T2R46 Met228), whereas other receptor variants had moderate changes in their maximal response, but not potency, relative to wild type. Using a cAMP fluorescent biosensor, we reveal the productive coupling of T2R14, but not the T2R14 Phe201 variant, to endogenous Gαi. Modeling revealed that these variants resulted in altered interactions that generally affected ligand binding (T2R30 Leu252) or Gα protein interactions (T2R46 Met228 and T2R14 Phe201), rather than receptor structural stability. Interestingly, this study is the first to show a difference in signaling for T2R50 Tyr203 (rs1376251) which has been associated with cardiovascular disease. The observation of naturally occurring functional variation in the T2Rs with the greatest expression in the heart is important, as their discovery should prove useful in deciphering the role of T2Rs within the cardiovascular system.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Humanos , Paladar/fisiologia , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
2.
Cell Rep ; 42(5): 112322, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37105170

RESUMO

Crosstalk between cardiac cells is critical for heart performance. Here we show that vascular cells within human cardiac organoids (hCOs) enhance their maturation, force of contraction, and utility in disease modeling. Herein we optimize our protocol to generate vascular populations in addition to epicardial, fibroblast, and cardiomyocyte cells that self-organize into in-vivo-like structures in hCOs. We identify mechanisms of communication between endothelial cells, pericytes, fibroblasts, and cardiomyocytes that ultimately contribute to cardiac organoid maturation. In particular, (1) endothelial-derived LAMA5 regulates expression of mature sarcomeric proteins and contractility, and (2) paracrine platelet-derived growth factor receptor ß (PDGFRß) signaling from vascular cells upregulates matrix deposition to augment hCO contractile force. Finally, we demonstrate that vascular cells determine the magnitude of diastolic dysfunction caused by inflammatory factors and identify a paracrine role of endothelin driving dysfunction. Together this study highlights the importance and role of vascular cells in organoid models.


Assuntos
Células Endoteliais , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Pericitos/metabolismo , Transdução de Sinais , Organoides/metabolismo
3.
Br J Pharmacol ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36772927

RESUMO

G protein-coupled receptor (GPCR) activation initiates signalling via a complex network of intracellular effectors that combine to produce diverse cellular and tissue responses. Although we have an advanced understanding of the proximal events following receptor stimulation, the molecular detail of GPCR signalling further downstream often remains obscure. Unravelling these GPCR-mediated signalling networks has important implications for receptor biology and drug discovery. In this context, phosphoproteomics has emerged as a powerful approach for investigating global GPCR signal transduction. Here, we provide a brief overview of the phosphoproteomic workflow and discuss current limitations and future directions for this technology. By highlighting some of the novel insights into GPCR signalling networks gained using phosphoproteomics, we demonstrate the utility of global phosphoproteomics to dissect GPCR signalling networks and to accelerate discovery of new targets for therapeutic development.

4.
Eur J Pharmacol ; 943: 175553, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736525

RESUMO

The orphan G protein-coupled receptor GPR139 is predominantly expressed in the central nervous system and has attracted considerable interest as a therapeutic target. However, the biological role of this receptor remains somewhat elusive, in part due to the lack of quality pharmacological tools to investigate GPR139 function. In an effort to understand GPR139 signaling and to identify improved compounds, in this study we performed virtual screening and analog searches, in combination with multiple pharmacological assays. We characterized GPR139-dependent signaling using previously published reference agonists in Ca2+ mobilization and inositol monophosphate accumulation assays, as well as a novel real-time GPR139 internalization assay. For the four reference agonists tested, the rank order of potency was conserved across signaling and internalization assays: JNJ-63533054 > Compound 1a ¼ Takeda > AC4 > DL43, consistent with previously reported values. We noted an increased efficacy of JNJ-63533054-mediated inositol monophosphate signaling and internalization, relative to Compound 1a. We then performed virtual screening for GPR139 agonist and antagonist compounds that were screened and validated in GPR139 functional assays. We identified four GPR139 agonists that were active in all assays, with similar or reduced potency relative to known compounds. Likewise, compound analogs selected based on GPR139 agonist and antagonist substructure searches behaved similarly to their parent compounds. Thus, we have characterized GPR139 signaling for multiple new ligands using G protein-dependent assays and a new real-time internalization assay. These data add to the GPR139 tool compound repertoire, which could be optimized in future medical chemistry campaigns.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Inositol
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217625

RESUMO

As natural chemokine inhibitors, evasin proteins produced in tick saliva are potential therapeutic agents for numerous inflammatory diseases. Engineering evasins to block the desired chemokines and avoid off-target side effects requires structural understanding of their target selectivity. Structures of the class A evasin EVA-P974 bound to human CC chemokine ligands 7 and 17 (CCL7 and CCL17) and to a CCL8-CCL7 chimera reveal that the specificity of class A evasins for chemokines of the CC subfamily is defined by conserved, rigid backbone-backbone interactions, whereas the preference for a subset of CC chemokines is controlled by side-chain interactions at four hotspots in flexible structural elements. Hotspot mutations alter target preference, enabling inhibition of selected chemokines. The structure of an engineered EVA-P974 bound to CCL2 reveals an underlying molecular mechanism of EVA-P974 target preference. These results provide a structure-based framework for engineering evasins as targeted antiinflammatory therapeutics.


Assuntos
Proteínas de Artrópodes/química , Quimiocinas/metabolismo , Inflamação/metabolismo , Engenharia de Proteínas , Carrapatos/metabolismo , Animais , Proteínas de Artrópodes/metabolismo , Ligação Proteica , Conformação Proteica , Receptores de Quimiocinas/metabolismo
6.
ACS Chem Biol ; 16(6): 973-981, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33988967

RESUMO

Chemokines are secreted proteins that regulate leukocyte migration during inflammatory responses by signaling through chemokine receptors. Full length CC chemokine ligand 14, CCL14(1-74), is a weak agonist for the chemokine receptor CCR1, but its activity is substantially enhanced upon proteolytic cleavage to CCL14(9-74). CCL14 is O-glycosylated at Ser7, adjacent to the site of proteolytic activation. To determine whether glycosylation regulates the activity of CCL14, we used native chemical ligation to prepare four homogeneously glycosylated variants of CCL14(1-74). Each protein was assembled from three synthetic peptide fragments in "one-pot" using two sequential ligation reactions. We show that while glycosylation of CCL14(1-74) did not affect CCR1 binding affinity or potency of activation, sialylated variants of CCL14(1-74) exhibited reduced activity after treatment with plasmin compared to nonsialylated forms. These data indicate that glycosylation may influence the biological activity of CCL14 by regulating its conversion from the full-length to the truncated, activated form.


Assuntos
Quimiocinas CC/metabolismo , Sequência de Aminoácidos , Quimiocinas CC/química , Glicosilação , Humanos , Domínios Proteicos , Proteólise
7.
Cell ; 184(8): 2167-2182.e22, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811809

RESUMO

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.


Assuntos
COVID-19/complicações , Cardiotônicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Cardiopatias/tratamento farmacológico , Quinazolinonas/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Citocinas/metabolismo , Feminino , Cardiopatias/etiologia , Células-Tronco Embrionárias Humanas , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo , Tratamento Farmacológico da COVID-19
8.
Mol Pharmacol ; 99(5): 328-341, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33602724

RESUMO

Positive allosteric modulation of metabotropic glutamate subtype 5 (mGlu5) receptor has emerged as a potential new therapeutic strategy for the treatment of schizophrenia and cognitive impairments. However, positive allosteric modulator (PAM) agonist activity has been associated with adverse side effects, and neurotoxicity has also been observed for pure PAMs. The structural and pharmacological basis of therapeutic versus adverse mGlu5 PAM in vivo effects remains unknown. Thus, gaining insights into the signaling fingerprints, as well as the binding kinetics of structurally diverse mGlu5 PAMs, may help in the rational design of compounds with desired properties. We assessed the binding and signaling profiles of N-methyl-5-(phenylethynyl)pyrimidin-2-amine (MPPA), 3-cyano-N-(2,5-diphenylpyrazol-3-yl)benzamide (CDPPB), and 1-[4-(4-chloro-2-fluoro-phenyl)piperazin-1-yl]-2-(4-pyridylmethoxy)ethenone [compound 2c, a close analog of 1-(4-(2-chloro-4-fluorophenyl)piperazin-1-yl)-2-(pyridin-4-ylmethoxy)ethanone] in human embryonic kidney 293A cells stably expressing mGlu5 using Ca2+ mobilization, inositol monophosphate (IP1) accumulation, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and receptor internalization assays. Of the three allosteric ligands, only CDPPB had intrinsic agonist efficacy, and it also had the longest receptor residence time and highest affinity. MPPA was a biased PAM, showing higher positive cooperativity with orthosteric agonists in ERK1/2 phosphorylation and Ca2+ mobilization over IP1 accumulation and receptor internalization. In primary cortical neurons, all three PAMs showed stronger positive cooperativity with (S)-3,5-dihydroxyphenylglycine (DHPG) in Ca2+ mobilization over IP1 accumulation. Our characterization of three structurally diverse mGlu5 PAMs provides further molecular pharmacological insights and presents the first assessment of PAM-mediated mGlu5 internalization. SIGNIFICANCE STATEMENT: Enhancing metabotropic glutamate receptor subtype 5 (mGlu5) activity is a promising strategy to treat cognitive and positive symptoms in schizophrenia. It is increasingly evident that positive allosteric modulators (PAMs) of mGlu5 are not all equal in preclinical models; there remains a need to better understand the molecular pharmacological properties of mGlu5 PAMs. This study reports detailed characterization of the binding and functional pharmacological properties of mGlu5 PAMs and is the first study of the effects of mGlu5 PAMs on receptor internalization.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Benzamidas/farmacologia , Linhagem Celular , Ácidos Graxos/farmacologia , Feminino , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologia , Ratos
9.
Proc Natl Acad Sci U S A ; 117(23): 12657-12664, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461364

RESUMO

Blood-feeding arthropods produce antiinflammatory salivary proteins called evasins that function through inhibition of chemokine-receptor signaling in the host. Herein, we show that the evasin ACA-01 from the Amblyomma cajennense tick can be posttranslationally sulfated at two tyrosine residues, albeit as a mixture of sulfated variants. Homogenously sulfated variants of the proteins were efficiently assembled via a semisynthetic native chemical ligation strategy. Sulfation significantly improved the binding affinity of ACA-01 for a range of proinflammatory chemokines and enhanced the ability of ACA-01 to inhibit chemokine signaling through cognate receptors. Comparisons of evasin sequences and structural data suggest that tyrosine sulfation serves as a receptor mimetic strategy for recognizing and suppressing the proinflammatory activity of a wide variety of mammalian chemokines. As such, the incorporation of this posttranslational modification (PTM) or mimics thereof into evasins may provide a strategy to optimize tick salivary proteins for antiinflammatory applications.


Assuntos
Ácaros e Carrapatos/metabolismo , Proteínas de Artrópodes/metabolismo , Quimiocinas/antagonistas & inibidores , Processamento de Proteína Pós-Traducional , Saliva/metabolismo , Animais , Proteínas de Artrópodes/química , Quimiocinas/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Sulfatos/metabolismo , Tirosina/metabolismo
10.
Front Physiol ; 11: 431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457649

RESUMO

The human genome contains ∼29 bitter taste receptors (T2Rs), which are responsible for detecting thousands of bitter ligands, including toxic and aversive compounds. This sentinel function varies between individuals and is underpinned by naturally occurring T2R polymorphisms, which have also been associated with disease. Recent studies have reported the expression of T2Rs and their downstream signaling components within non-gustatory tissues, including the heart. Though the precise role of T2Rs in the heart remains unclear, evidence points toward a role in cardiac contractility and overall vascular tone. In this review, we summarize the extra-oral expression of T2Rs, focusing on evidence for expression in heart; we speculate on the range of potential ligands that may activate them; we define the possible signaling pathways they activate; and we argue that their discovery in heart predicts an, as yet, unappreciated cardiac physiology.

11.
Mol Pharmacol ; 98(1): 49-60, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32358164

RESUMO

Negative allosteric modulation of the metabotropic glutamate 5 (mGlu5) receptor has emerged as a potential strategy for the treatment of neurologic disorders. Despite the success in preclinical studies, many mGlu5 negative allosteric modulators (NAMs) that have reached clinical trials failed due to lack of efficacy. In this study, we provide a detailed in vitro pharmacological characterization of nine clinically and preclinically tested NAMs. We evaluated inhibition of l-glutamate-induced signaling with Ca2+ mobilization, inositol monophosphate (IP1) accumulation, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and real-time receptor internalization assays on rat mGlu5 expressed in HEK293A cells. Moreover, we determined association rates (kon) and dissociation rates (koff), as well as NAM affinities with [3H]methoxy-PEPy binding experiments. kon and koff values varied greatly between the nine NAMs (34- and 139-fold, respectively) resulting in long receptor residence times (>400 min) for basimglurant and mavoglurant, medium residence times (10-30 min) for AZD2066, remeglurant, and (RS)-remeglurant, and low residence times (<10 mins) for dipraglurant, F169521, F1699611, and STX107. We found that all NAMs inhibited l-glutamate-induced mGlu5 receptor internalization, generally with a similar potency to IP1 accumulation and ERK1/2 phosphorylation, whereas Ca2+ mobilization was less potently inhibited. Operational model of allosterism analyses revealed that dipraglurant and (RS)-remeglurant were biased toward (affinity) receptor internalization and away (cooperativity) from the ERK1/2 phosphorylation pathway, respectively. Our study is the first to measure mGlu5 NAM binding kinetics and negative allosteric modulation of mGlu5 receptor internalization and adds significant new knowledge about the molecular pharmacology of a diverse range of clinically relevant NAMs. SIGNIFICANCE STATEMENT: The metabotropic glutamate 5 (mGlu5) receptor is important in many brain functions and implicated in several neurological pathologies. Negative allosteric modulators (NAMs) have shown promising results in preclinical models but have so far failed in human clinical trials. Here we provide the most comprehensive and comparative molecular pharmacological study to date of nine preclinically/clinically tested NAMs at the mGlu5 receptor, which is also the first study to measure ligand binding kinetics and negative allosteric modulation of mGlu5 receptor internalization.


Assuntos
Imidazóis/farmacologia , Indóis/farmacologia , Isoxazóis/farmacologia , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Triazóis/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Imidazóis/química , Indóis/química , Fosfatos de Inositol/metabolismo , Isoxazóis/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Piridinas/química , Ratos , Fatores de Tempo , Triazóis/química
12.
J Am Chem Soc ; 142(20): 9141-9146, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32330017

RESUMO

Targeting chemokine signaling is an attractive avenue for the treatment of inflammatory disorders. Tyrosine sulfation is an important post-translational modification (PTM) that enhances chemokine-receptor binding and is also utilized by a number of pathogenic organisms to improve the binding affinity of immune-suppressive chemokine binding proteins (CKBPs). Here we report the display selection of tyrosine-sulfated cyclic peptides using a reprogrammed genetic code to discover high-affinity ligands for the chemokine CCL11 (eotaxin-1). The selected cyclic sulfopeptides possess high affinity for the target chemokine (as well as one or more of the related family members CCL2, CCL7 and CCL24) and inhibit CCL11 activation of CC chemokine receptor 3 (CCR3). This work demonstrates the utility of exploiting native PTMs as binding motifs for the generation of new leads for medicinal chemistry.


Assuntos
Quimiocina CCL11/antagonistas & inibidores , Descoberta de Drogas , Peptídeos/farmacologia , RNA Mensageiro/efeitos dos fármacos , Quimiocina CCL11/genética , Quimiocina CCL11/metabolismo , Humanos , Estrutura Molecular , Peptídeos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
J Biol Chem ; 295(19): 6518-6531, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32241914

RESUMO

Leukocyte recruitment is a universal feature of tissue inflammation and regulated by the interactions of chemokines with their G protein-coupled receptors. Activation of CC chemokine receptor 2 (CCR2) by its cognate chemokine ligands, including CC chemokine ligand 2 (CCL2), plays a central role in recruitment of monocytes in several inflammatory diseases. In this study, we used phosphoproteomics to conduct an unbiased characterization of the signaling network resulting from CCL2 activation of CCR2. Using data-independent acquisition MS analysis, we quantified both the proteome and phosphoproteome in FlpIn-HEK293T cells stably expressing CCR2 at six time points after activation with CCL2. Differential expression analysis identified 699 significantly regulated phosphorylation sites on 441 proteins. As expected, many of these proteins are known to participate in canonical signal transduction pathways and in the regulation of actin cytoskeleton dynamics, including numerous guanine nucleotide exchange factors and GTPase-activating proteins. Moreover, we identified regulated phosphorylation sites in numerous proteins that function in the nucleus, including several constituents of the nuclear pore complex. The results of this study provide an unprecedented level of detail of CCR2 signaling and identify potential targets for regulation of CCR2 function.


Assuntos
Fosfoproteínas/metabolismo , Proteômica , Receptores CCR2/metabolismo , Transdução de Sinais , Ontologia Genética , Células HEK293 , Humanos , Fosforilação
14.
Protein Sci ; 29(2): 420-432, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31605402

RESUMO

In response to infection or injury, the body mounts an inflammatory immune response in order to neutralize pathogens and promote tissue repair. The key effector cells for these responses are the leukocytes (white blood cells), which are specifically recruited to the site of injury. However, dysregulation of the inflammatory response, characterized by the excessive migration of leukocytes to the affected tissues, can also lead to chronic inflammatory diseases. Leukocyte recruitment is regulated by inflammatory mediators, including an important family of small secreted chemokines and their corresponding G protein-coupled receptors expressed in leukocytes. Unsurprisingly, due to their central role in the leukocyte inflammatory response, chemokines and their receptors have been intensely investigated and represent attractive drug targets. Nonetheless, the full therapeutic potential of chemokine receptors has not been realized, largely due to the complexities in the chemokine system. The determination of chemokine-receptor structures in recent years has dramatically shaped our understanding of the molecular mechanisms that underpin chemokine signaling. In this review, we summarize the contemporary structural view of chemokine-receptor recognition, and describe the various binding modes of peptide and small-molecule ligands to chemokine receptors. We also provide some perspectives on the implications of these data for future research and therapeutic development. IMPORTANCE STATEMENT: Given their central role in the leukocyte inflammatory response, chemokines and their receptors are considered as important regulators of physiology and viable therapeutic targets. In this review, we provide a summary of the current understanding of chemokine: chemokine-receptor interactions that have been gained from structural studies, as well as their implications for future drug discovery efforts.


Assuntos
Quimiocinas/metabolismo , Inflamação/metabolismo , Leucócitos/metabolismo , Receptores de Quimiocinas/metabolismo , Animais , Quimiocinas/química , Humanos , Leucócitos/química , Conformação Proteica , Receptores de Quimiocinas/química
15.
Br J Pharmacol ; 177(5): 961-968, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31863461

RESUMO

The discovery of novel ligands for orphan GPCRs has profoundly affected our understanding of human biology, opening new opportunities for research, and ultimately for therapeutic development. Accordingly, much effort has been directed towards the remaining orphan receptors, yet the rate of GPCR de-orphanisation has slowed in recent years. Here, we briefly review contemporary methodologies of de-orphanisation and then highlight our recent integrated computational and experimental approach for discovery of novel peptide ligands for orphan GPCRs. We identified putative endogenous peptide ligands and found peptide receptor sequence and structural characteristics present in selected orphan receptors. With comprehensive pharmacological screening using three complementary assays, we discovered novel pairings of 17 peptides with five different orphan GPCRs and revealed potential additional ligands for nine peptide GPCRs. These promising findings lay the foundation for future studies on these peptides and receptors to characterise their roles in human physiology and disease.


Assuntos
Peptídeos , Receptores Acoplados a Proteínas G , Sequência de Aminoácidos , Bioensaio , Humanos , Ligantes
16.
Cell ; 179(4): 895-908.e21, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675498

RESUMO

The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating comparative genomics across 313 species and bioinformatics on all protein sequences and structures of human class A GPCRs, we identify universal characteristics that uncover additional potential peptidergic signaling systems. Using three orthogonal biochemical assays, we pair 17 proposed endogenous ligands with five orphan GPCRs that are associated with diseases, including genetic, neoplastic, nervous and reproductive system disorders. We also identify additional peptides for nine receptors with recognized ligands and pathophysiological roles. This integrated computational and multifaceted experimental approach expands the peptide-GPCR network and opens the way for studies to elucidate the roles of these signaling systems in human physiology and disease. VIDEO ABSTRACT.


Assuntos
Genômica , Peptídeos/genética , Conformação Proteica , Receptores Acoplados a Proteínas G/genética , Sequência de Aminoácidos/genética , Biologia Computacional , Redes Reguladoras de Genes/genética , Genitália/metabolismo , Genitália/patologia , Humanos , Ligantes , Neoplasias/genética , Neoplasias/patologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Transdução de Sinais/genética
17.
Mol Pharmacol ; 96(4): 463-474, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399503

RESUMO

G protein-coupled receptor (GPCR) internalization is crucial for the termination of GPCR activity, and in some cases is associated with G protein-independent signaling and endosomal receptor signaling. To date, internalization has been studied in great detail for class A GPCRs; whereas it is not well established to what extent the observations can be generalized to class C GPCRs, including the extracellular calcium-sensing receptor (CaSR). The CaSR is a prototypical class C GPCR that maintains stable blood calcium (Ca2+) levels by sensing minute changes in extracellular free Ca2+ It is thus necessary that the activity of the CaSR is tightly regulated, even while continuously being exposed to its endogenous agonist. Previous studies have used overexpression of intracellular proteins involved in GPCR trafficking, pathway inhibitors, and cell-surface expression or functional desensitization as indirect measures to investigate CaSR internalization. However, there is no general consensus on the processes involved, and the mechanism of CaSR internalization remains poorly understood. The current study provides new insights into the internalization mechanism of the CaSR. We have used a state-of-the-art time-resolved fluorescence resonance energy transfer-based internalization assay to directly measure CaSR internalization in real-time. We demonstrate that the CaSR displays both constitutive and concentration-dependent Ca2+-mediated internalization. For the first time, we conclusively show that CaSR internalization is sensitive to immediate positive and negative modulation by the CaSR-specific allosteric modulators N-(3-[2-chlorophenyl]propyl)-(R)-α-methyl-3-methoxybenzylamine (NPS R-568) and 2-chloro-6-[(2R)-2-hydroxy-3-[(2-methyl-1-naphthalen-2-ylpropan-2-yl)amino]propoxy]benzonitrile (NPS 2143), respectively. In addition, we provide compelling evidence that CaSR internalization is ß-arrestin-dependent while interestingly being largely independent of Gq/11 and Gi/o protein signaling. SIGNIFICANCE STATEMENT: A novel highly efficient cell-based real-time internalization assay to show that calcium-sensing receptor (CaSR) internalization is ß-arrestin-dependent and sensitive to modulation by allosteric ligands.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Receptores de Detecção de Cálcio/metabolismo , beta-Arrestinas/metabolismo , Regulação Alostérica , Cálcio/sangue , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Ligantes , Mutação , Naftalenos/farmacologia , Fenetilaminas/farmacologia , Propilaminas/farmacologia , Transporte Proteico , Receptores de Detecção de Cálcio/genética
18.
Sci Rep ; 9(1): 3802, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846711

RESUMO

GPR139 is an orphan G protein-coupled receptor (GPCR) that is primarily expressed in the brain in regions known to regulate motor control and metabolism. Here, we screened a diverse 4,000 compound library in order to identify GPR139 agonists. We identified 11 initial hits in a calcium mobilization screen, including one compound, AC4, which contains a different chemical scaffold to what has previously been described for GPR139 agonists. Our mutagenesis data shows that AC4 interacts with the same hotspots in the binding site of GPR139 as those reported to interact with the reference agonists 1a and 7c. We additionally tested and validated 160 analogs in a calcium mobilization assay and found 5 compounds with improved potency compared to AC4. In total, we identified 36 GPR139 agonists with potencies in the nanomolar range (90-990 nM). The most potent compounds were confirmed as GPR139 agonists using an orthogonal ERK phosphorylation assay where they displayed a similar rank order of potency. Accordingly, we herein introduce multiple novel GPR139 agonists, including one with a novel chemical scaffold, which can be used as tools for future pharmacological and medicinal chemistry exploration of GPR139.


Assuntos
Proteínas do Tecido Nervoso/agonistas , Receptores Acoplados a Proteínas G/agonistas , Animais , Sítios de Ligação , Células CHO , Cricetulus
19.
Annu Rev Anim Biosci ; 6: 197-225, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29166126

RESUMO

Nutrient-sensing mechanisms have emerged as the fringe articulating nutritional needs with dietary choices. Carbohydrate, amino acid, fatty acid, mineral, and water-sensing receptors are highly conserved across mammals and birds, consisting of a repertoire of 22 genes known to date. In contrast, bitter receptors are highly divergent and have a high incidence of polymorphisms within and between mammals and birds and are involved in the adaptation of species to specific environments. In addition, the expression of nutrient-sensing genes outside the oral cavity seems to mediate the required decision-making dialogue between the gut and the brain by translating exogenous chemical stimuli into neuronal inputs, and vice versa, to translate the endogenous signals relevant to the nutritional status into specific appetites and the control of feed intake. The relevance of these sensors in nondigestive systems has uncovered fascinating potential as pharmacological targets relevant to respiratory and cardiovascular diseases.


Assuntos
Olfato/fisiologia , Paladar/fisiologia , Animais , Apetite/fisiologia , Regulação do Apetite/fisiologia , Aves , Células Quimiorreceptoras/fisiologia , Trato Gastrointestinal/fisiologia , Mamíferos , Receptores Acoplados a Proteínas G/fisiologia , Olfato/genética , Paladar/genética
20.
Handb Exp Pharmacol ; 245: 41-61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29018878

RESUMO

The ability to regulate the interaction between cells and their extracellular environment is essential for the maintenance of appropriate physiological function. For G protein-coupled receptors (GPCRs), this regulation occurs through multiple mechanisms that provide spatial and temporal control for signal transduction. One of the major mechanisms for GPCR regulation involves their endocytic trafficking, which serves to internalize the receptors from the plasma membrane and thereby attenuate G protein-dependent signaling. However, there is accumulating evidence to suggest that GPCRs can signal independently of G proteins, as well as from intracellular compartments including endosomes. It is in this context that receptor internalization and intracellular trafficking have attracted renewed interest within the GPCR field. In this chapter, we will review the current understanding and methodologies that have been used to investigate internalization and intracellular signaling of GPCRs, with a particular focus on emerging real-time techniques. These recent developments have improved our understanding of the complexities of GPCR internalization and intracellular signaling and suggest that the broader biological relevance and potential therapeutic implications of these processes remain to be explored.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Transporte Proteico , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...