Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Cell Biol ; 208(7): 961-74, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25800056

RESUMO

We previously identified Waf1 Cip1 stabilizing protein 39 (WISp39) as a binding partner for heat shock protein 90 (Hsp90). We now report that WISp39 has an essential function in the control of directed cell migration, which requires WISp39 interaction with Hsp90. WISp39 knockdown (KD) resulted in the loss of directional motility of mammalian cells and profound changes in cell morphology, including the loss of a single leading edge. WISp39 binds Coronin 1B, known to regulate the Arp2/3 complex and Cofilin at the leading edge. WISp39 preferentially interacts with phosphorylated Coronin 1B, allowing it to complex with Slingshot phosphatase (SSH) to dephosphorylate and activate Cofilin. WISp39 also regulates Arp2/3 complex localization at the leading edge. WISp39 KD-induced morphological changes could be rescued by overexpression of Coronin 1B together with a constitutively active Cofilin mutant. We conclude that WISp39 associates with Hsp90, Coronin 1B, and SSH to regulate Cofilin activation and Arp2/3 complex localization at the leading edge.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Imunofilinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fatores de Despolimerização de Actina/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Ativação Enzimática/genética , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Imunofilinas/genética , Proteínas dos Microfilamentos/biossíntese , Fosfoproteínas Fosfatases , Fosforilação , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Ligação a Tacrolimo
3.
Sci Rep ; 5: 7691, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25573673

RESUMO

Self/non-self discrimination characterizes immunity and allows responses against pathogens but not self-antigens. Understanding the principles that govern this process is essential for designing autoimmunity treatments. p21 is thought to attenuate autoreactivity by limiting T cell expansion. Here, we provide direct evidence for a p21 role in controlling autoimmune T cell autoreactivity without affecting normal T cell responses. We studied C57BL/6, C57BL/6/lpr and MRL/lpr mice overexpressing p21 in T cells, and showed reduced autoreactivity and lymphadenopathy in C57BL/6/lpr, and reduced mortality in MRL/lpr mice. p21 inhibited effector/memory CD4(+) CD8(+) and CD4(-)CD8(-) lpr T cell accumulation without altering defective lpr apoptosis. This was mediated by a previously non-described p21 function in limiting T cell overactivation and overproduction of IFN-γ, a key lupus cytokine. p21 did not affect normal T cell responses, revealing differential p21 requirements for autoreactive and normal T cell activity regulation. The underlying concept of these findings suggests potential treatments for lupus and autoimmune lymphoproliferative syndrome, without compromising normal immunity.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Interferon gama/metabolismo , Linfócitos T/metabolismo , Animais , Apoptose , Doenças Autoimunes/patologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Memória Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Ovalbumina/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Vaccinia virus/imunologia
4.
Autophagy ; 10(10): 1702-11, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126732

RESUMO

In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G1/G0 in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G2/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G2/M transition and arrest in G1/G 00 autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G1/G0 quiescent state.


Assuntos
Autofagia/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Nitrogênio/deficiência , Nitrogênio/farmacologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Fenótipo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
5.
Mol Biol Cell ; 25(20): 3105-18, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25143403

RESUMO

Tetraploidy can arise from various mitotic or cleavage defects in mammalian cells, and inheritance of multiple centrosomes induces aneuploidy when tetraploid cells continue to cycle. Arrest of the tetraploid cell cycle is therefore potentially a critical cellular control. We report here that primary rat embryo fibroblasts (REF52) and human foreskin fibroblasts become senescent in tetraploid G1 after drug- or small interfering RNA (siRNA)-induced failure of cell cleavage. In contrast, T-antigen-transformed REF52 and p53+/+ HCT116 tumor cells rapidly become aneuploid by continuing to cycle after cleavage failure. Tetraploid primary cells quickly become quiescent, as determined by loss of the Ki-67 proliferation marker and of the fluorescent ubiquitination-based cell cycle indicator/late cell cycle marker geminin. Arrest is not due to DNA damage, as the γ-H2AX DNA damage marker remains at control levels after tetraploidy induction. Arrested tetraploid cells finally become senescent, as determined by SA-ß-galactosidase activity. Tetraploid arrest is dependent on p16INK4a expression, as siRNA suppression of p16INK4a bypasses tetraploid arrest, permitting primary cells to become aneuploid. We conclude that tetraploid primary cells can become senescent without DNA damage and that induction of senescence is critical to tetraploidy arrest.


Assuntos
Ciclo Celular/fisiologia , Senescência Celular/fisiologia , Tetraploidia , Animais , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/metabolismo , Humanos , Mitose , RNA Interferente Pequeno/genética , Ratos , Proteína Supressora de Tumor p53/metabolismo
6.
Cell Cycle ; 12(5): 837-41, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23388455

RESUMO

We previously identified TD-60 (RCC2) as a mitotic centromere-associated protein that is necessary for proper completion of mitosis. We now report that TD-60 is an essential regulator of cell cycle progression during interphase. siRNA suppression blocks progression of mammalian G1/S phase cells and progression of G2 cells into mitosis. Prolonged arrest occurs both in non-transformed cells and in transformed cells lacking functional p53. TD-60 associates with Rac1 and Arf6 and has recently been demonstrated to be an element of α5ß1 integrin and cortactin interactomes. These associations with known elements of cell cycle control, together with our data, suggest that TD-60 is an essential component of one or more signaling pathways that drive cell cycle progression. During mitosis, TD-60 is required for correct assembly of the mitotic spindle and activation of key mitotic proteins. In contrast, in interphase TD-60 promotes cell cycle progression through what must be distinct mechanisms. TD-60 thus appears to be one of the growing categories of proteins that "moonlight," or have more than one distinct cellular function.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interfase , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Mitose , RNA Interferente Pequeno/metabolismo , Transfecção
7.
J Biol Chem ; 286(34): 29531-9, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21725088

RESUMO

p21(Waf1/Cip1) protein levels respond to DNA damage; p21 is induced after ionizing radiation, but degraded after UV. p21 degradation after UV is necessary for optimal DNA repair, presumably because p21 inhibits nucleotide excision repair by blocking proliferating cell nuclear antigen (PCNA). Because p21 also inhibits DNA mismatch repair (MMR), we investigated how p21 levels respond to DNA alkylation by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), which triggers the MMR system. We show that MNNG caused rapid degradation of p21, and this involved the ubiquitin ligase Cdt2 and the proteasome. p21 degradation further required MSH2 but not MLH1. p21 mutants that cannot bind PCNA or cannot be ubiquitinated were resistant to MNNG. MNNG induced the formation of PCNA complexes with MSH6 and Cdt2. Finally, when p21 degradation was blocked, MNNG treatment resulted in reduced recruitment of MMR proteins to chromatin. This study describes a novel pathway that removes p21 to allow cells to efficiently activate the MMR system.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Reparo do DNA/efeitos dos fármacos , Metilnitronitrosoguanidina/farmacologia , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cromatina/genética , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Células HeLa , Humanos , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/fisiologia
8.
Mol Biol Cell ; 22(13): 2212-20, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21551075

RESUMO

In fibroblasts and keratocytes, motility is actin dependent, while microtubules play a secondary role, providing directional guidance. We demonstrate here that the motility of glioblastoma cells is exceptional, in that it occurs in cells depleted of assembled actin. Cells display persistent motility in the presence of actin inhibitors at concentrations sufficient to fully disassemble actin. Such actin independent motility is characterized by the extension of cell protrusions containing abundant microtubule polymers. Strikingly, glioblastoma cells exhibit no motility in the presence of microtubule inhibitors, at concentrations that disassemble labile microtubule polymers. In accord with an unconventional mode of motility, glioblastoma cells have some unusual requirements for the Rho GTPases. While Rac1 is required for lamellipodial protrusions in fibroblasts, expression of dominant negative Rac1 does not suppress glioblastoma migration. Other GTPase mutants are largely without unique effect, except dominant positive Rac1-Q61L, and rapidly cycling Rac1-F28L, which substantially suppress glioblastoma motility. We conclude that glioblastoma cells display an unprecedented mode of intrinsic motility that can occur in the absence of actin polymer, and that appears to require polymerized microtubules.


Assuntos
Actinas/metabolismo , Movimento Celular/fisiologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Fibroblastos/metabolismo , Humanos , Microtúbulos/metabolismo , Mutação , Polimerização , Pseudópodes/metabolismo , Células Tumorais Cultivadas , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
9.
Cell Cycle ; 9(9): 1792-801, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20436289

RESUMO

Microtubule targeting drugs are successful in chemotherapy because they indefinitely activate the spindle assembly checkpoint. The spindle assembly checkpoint monitors proper attachment of all kinetochores to microtubules and tension between the kinetochores of sister chromatids to prevent premature anaphase entry. To this end, the activated spindle assembly checkpoint suppresses the E3 ubiquitin ligase activity of the anaphase-promoting complex (APC). In the continued presence of conditions that activate the spindle assembly checkpoint, cells eventually escape from mitosis by "slippage". It has not been directly tested whether APC activation accompanies slippage. Using cells blocked in mitosis with the microtubule assembly inhibitor nocodazole, we show that mitotic APC substrates are degraded upon mitotic slippage. To confirm that APC is normally activated upon mitotic slippage we have found that knockdown of Cdc20 and Cdh1, two mitotic activators of APC, prevents the degradation of APC substrates during mitotic slippage. We provide the first direct demonstration that despite conditions that activate the spindle checkpoint, APC is indeed activated upon mitotic slippage of cells to interphase cells. Activation of the spindle checkpoint by microtubule targeting drugs used in chemotherapy may not indefinitely prevent APC activation.


Assuntos
Mitose , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Antígenos CD , Antineoplásicos/farmacologia , Caderinas/genética , Caderinas/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fase G1 , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Nocodazol/farmacologia , Fase S , Fuso Acromático/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/metabolismo
10.
Mol Biol Cell ; 20(7): 1891-902, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19211842

RESUMO

Several regulatory proteins control cell cycle progression. These include Emi1, an anaphase-promoting complex (APC) inhibitor whose destruction controls progression through mitosis to G1, and p21(WAF1), a cyclin-dependent kinase (CDK) inhibitor activated by DNA damage. We have analyzed the role of p21(WAF1) in G2-M phase checkpoint control and in prevention of polyploidy after DNA damage. After DNA damage, p21(+/+) cells stably arrest in G2, whereas p21(-/-) cells ultimately progress into mitosis. We report that p21 down-regulates Emi1 in cells arrested in G2 by DNA damage. This down-regulation contributes to APC activation and results in the degradation of key mitotic proteins including cyclins A2 and B1 in p21(+/+) cells. Inactivation of APC in irradiated p21(+/+) cells can overcome the G2 arrest. siRNA-mediated Emi1 down-regulation prevents irradiated p21(-/-) cells from entering mitosis, whereas concomitant down-regulation of APC activity counteracts this effect. Our results demonstrate that Emi1 down-regulation and APC activation leads to stable p21-dependent G2 arrest after DNA damage. This is the first demonstration that Emi1 regulation plays a role in the G2 DNA damage checkpoint. Further, our work identifies a new p21-dependent mechanism to maintain G2 arrest after DNA damage.


Assuntos
Proteínas de Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Regulação para Baixo/genética , Proteínas F-Box/genética , Fase G2 , Ciclossomo-Complexo Promotor de Anáfase , Antígenos CD , Caderinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação para Baixo/efeitos da radiação , Ativação Enzimática/efeitos da radiação , Proteínas F-Box/metabolismo , Fase G2/efeitos da radiação , Raios gama , Células HCT116 , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo
11.
Cell Div ; 2: 29, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17910764
12.
Mol Cell ; 17(2): 237-49, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15664193

RESUMO

p21(WAF1/CIP1), a cyclin-dependent kinase inhibitor and a critical regulator of cell cycle, is controlled transcriptionally by p53-dependent and -independent mechanisms and posttranslationally by the proteasome. We have identified WISp39, a tetratricopeptide repeat (TPR) protein that binds p21. WISp39 stabilizes newly synthesized p21 protein by preventing its proteasomal degradation. WISp39, p21, and hsp90 form a trimeric complex in vivo. The interaction of WISp39 with Hsp90 is abolished by point mutations within the C-terminal TPR domain of WISp39. Although this WISp39 TPR mutant binds p21 in vivo, it fails to stabilize p21. Our results suggest that WISp39 recruits Hsp90 to regulate p21 protein stability. WISp39 downregulation by siRNA prevents the accumulation of p21 and cell cycle arrest after ionizing radiation. The results demonstrate the importance of posttranslational stabilization of p21 protein by WISp39 in regulating cellular p21 activity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Inibidores Enzimáticos/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21 , Humanos , Imunofilinas , Camundongos , Dados de Sequência Molecular , Complexos Multiproteicos , Mutação Puntual , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Radiação Ionizante , Alinhamento de Sequência , Proteínas de Ligação a Tacrolimo , Distribuição Tecidual , Técnicas do Sistema de Duplo-Híbrido
13.
Methods Mol Biol ; 281: 55-71, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15220521

RESUMO

p21WAF1 was originally identified as a protein that binds and inhibits cyclin-dependent kinases (CDKs). p21WAF1 is recognized to have at least two separate roles-first as a CDK inhibitor, and second as an inhibitor of PCNA, an accessory protein of DNA polymerase delta. p21WAF1 plays a critical role in the cellular response to DNA damage. Additionally, p21WAF1 plays a role in DNA repair, apoptosis, cellular senescence, terminal differentiation, and cell cycle arrest upon extracellular signaling. p21WAF1 protein levels are regulated both by transcriptional control by p53 and by factors other than p53, as well as by posttranscriptional regulation. Although the role of p21WAF1 has been explained so far only by its interaction with CDKs and with PCNA, it has several other binding partners. The ability of p21WAF1 to participate in several cellular functions has been widely studied by transfection of cells with p21WAF1 vectors. We describe here procedures for analysis of p21WAF1 function in mammalian cells after transfection of p21 plasmids. The procedures include inhibition of DNA synthesis, cellular localization, association with binding partners, and half-life measurements.


Assuntos
Western Blotting/métodos , Ciclo Celular/fisiologia , Ciclinas/fisiologia , DNA/metabolismo , Fibroblastos/metabolismo , Imunofluorescência/métodos , Sequência de Aminoácidos , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/química , Cicloeximida/farmacologia , Dano ao DNA , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Fibroblastos/citologia , Meia-Vida , Dados de Sequência Molecular , Antígeno Nuclear de Célula em Proliferação/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Ratos
14.
J Biol Chem ; 279(22): 23376-83, 2004 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-15016799

RESUMO

Rb (retinoblastoma protein) inhibits E2F-1-induced cell death. We now show that the ability of Rb to inhibit E2F-1-induced cell death is dependent on a functional LXCXE-binding site in Rb, thereby suggesting that proteins that bind the LXCXE-binding site in Rb may regulate the anti-apoptotic activity of Rb. HDAC1, an LXCXE protein that plays a critical role in Rb-mediated transcription repression, abrogates the effect of Rb on E2F-1-induced cell death. In contrast, RF-Cp145, another LXCXE protein, cooperates with Rb to inhibit E2F-1-induced cell death. Both proteins exert their effect in an LXCXE-dependent manner. Rb regulates E2F-induced cell death by acting upstream of p73. Rb represses the p73 promoter. Our results further suggest a model in which Rb-E2F-1 complexes mediate the anti-apoptotic activity of Rb through active repression of target genes without recruiting HDAC1.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Proteína do Retinoblastoma/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Morte Celular/fisiologia , Linhagem Celular Tumoral , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Regulação da Expressão Gênica , Genes Supressores de Tumor , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica
15.
Cell Cycle ; 3(2): 134-7, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14712074

RESUMO

UV or g irradiation mediated DNA damage activates p53 and induces cell cycle arrest. Induction of cyclin dependent kinase inhibitor p21WAF1 by p53 after DNA damage plays an important role in cell cycle arrest after gamma irradiation. The p53 mediated cell cycle arrest has been postulated to allow cells to repair the DNA damage. Repair of UV damaged DNA occurs primarily by the nucleotide excision pathway (NER). It is known that p21WAF1 binds PCNA and inhibits PCNA function in DNA replication. PCNA is also required for repair by NER but there have been conflicting reports on whether p21WAF1 can inhibit PCNA function in NER. It has therefore been difficult to integrate the UV induced cell cycle arrest by p21 in the context of repair of UV damaged DNA. A recent study reported that p21WAF1 protein is degraded after low but not high doses of UV irradiation, that cell cycle arrest after UV is p21 independent, and that at low dose UV irradiation p21WAF1 degradation is essential for optimal DNA repair. These findings shed new light on the role of p21 in the cellular response to UV and clarify some outstanding issues concerning p21WAF1 function.


Assuntos
Ciclinas/metabolismo , Dano ao DNA/efeitos da radiação , Proteínas Quinases/metabolismo , Animais , Ciclo Celular/fisiologia , Ciclo Celular/efeitos da radiação , Quinase 1 do Ponto de Checagem , Inibidor de Quinase Dependente de Ciclina p21 , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/efeitos da radiação , Ubiquitina/metabolismo , Raios Ultravioleta , Fosfatases cdc25/metabolismo
16.
Cell ; 114(5): 599-610, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-13678583

RESUMO

p53-mediated increase in cyclin-dependent kinase inhibitor p21(WAF1) protein is thought to be the major mediator of cell cycle arrest after DNA damage. Previously p21 protein levels have been reported to increase or to decrease after UV irradiation. We show that p21 protein is degraded after irradiation of a variety of cell types with low but not high doses of UV. Cell cycle arrest occurs despite p21 degradation via Tyr(15) inhibitory phosphorylation of cdk2 and differs from the classical p21-dependent checkpoint elicited by ionizing radiation. In contrast to the basal turnover of p21, degradation of p21 switches to ubiquitin/Skp2-dependent proteasome pathway following UV irradiation. ATR activation after UV irradiation is essential for signaling p21 degradation. Finally, UV-induced p21 degradation is essential for optimal DNA repair. These results provide novel insight into regulation of p21 protein and its role in the cellular response to DNA damage.


Assuntos
Ciclinas/metabolismo , Dano ao DNA , Reparo do DNA , Ubiquitina/metabolismo , Raios Ultravioleta , Células 3T3 , Animais , Cafeína/farmacologia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21 , Cicloeximida/farmacologia , Detergentes/farmacologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Octoxinol/farmacologia , Fosforilação , Testes de Precipitina , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Quinases Associadas a Fase S , Transdução de Sinais , Temperatura , Fatores de Tempo , Transfecção , Tirosina/metabolismo
17.
J Biol Chem ; 278(48): 48467-73, 2003 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-12947101

RESUMO

The five subunit replication factor C (RF-C) complex plays a critical role in DNA elongation. We find that the large subunit of RF-C (RF-Cp145) is phosphorylated in vivo whereas the smaller RF-C subunits are not phosphorylated. The phosphorylation of endogenous RFCp145 is modulated in a cell cycle-dependent manner. Phosphorylation is maximal in G2/M and is inhibited by an inhibitor of cyclin-dependent kinases. Phosphorylation of purified recombinant RF-C complex in vitro reveals that RF-Cp145 is preferentially phosphorylated by cdc2-cyclin B but not by cdk2-cyclin A or cdk2-cyclin E. In vitro phosphorylation of RF-C complex by cdc2-cyclin B kinases leads to dissociation of phosphorylated RFCp145 from the RF-C complex. Using different approaches we demonstrate that phosphorylated RFCp145 is indeed dissociated from RF-Cp40 and RF-Cp37 in vivo. These results suggest that destabilization of the RF-C complex by CDKs may inactivate the RF-C complex at the end of S phase.


Assuntos
Proteínas de Ligação a DNA/química , Animais , Quinases relacionadas a CDC2 e CDC28/metabolismo , Células COS , Ciclo Celular , Centrifugação com Gradiente de Concentração , Ciclina B/metabolismo , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Epitopos , Fase G2 , Células HeLa , Humanos , Mitose , Fosforilação , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteína de Replicação C , Fase S , Fatores de Tempo
18.
Nucleic Acids Res ; 31(17): 5202-11, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12930972

RESUMO

Replication factor C (RF-C) complex binds to DNA primers and loads PCNA onto DNA, thereby increasing the processivity of DNA polymerases. We have previously identified a distinct region, domain B, in the large subunit of human RF-C (RF-Cp145) which binds to PCNA. We show here that the functional interaction of RF-Cp145 with PCNA is regulated by cdk-cyclin kinases. Phosphorylation of either RF-Cp145 as a part of the RF-C complex or RF-Cp145 domain B by cdk-cyclin kinases inhibits their ability to bind PCNA. A cdk-cyclin phosphorylation site, Thr506 in RF-Cp145, identified by mass spectrometry, is also phosphorylated in vivo. A Thr506-->Ala RF-Cp145 domain B mutant is a poor in vitro substrate for cdk-cyclin kinase and, consequently, the ability of this mutant to bind PCNA was not suppressed by phosphorylation. By generating an antibody directed against phospho-Thr506 in RF-Cp145, we demonstrate that phosphorylation of endogenous RF-Cp145 at Thr506 is mediated by CDKs since it is abolished by treatment of cells with the cdk-cyclin inhibitor roscovitine. We have thus mapped an in vivo cdk-cyclin phosphorylation site within the PCNA binding domain of RF-Cp145.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Treonina/metabolismo , Animais , Sítios de Ligação/genética , Ligação Competitiva , Células COS , Chlorocebus aethiops , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Fosforilação , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteína de Replicação C , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...