Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 353: 129342, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714123

RESUMO

The current manuscript summarizes different electrochemical sensing systems developed within the last 5 years for the detection of zearalenone (ZEN) in diverse matrices such as food, feed, and biofluids. ZEN is one of the most prevalent non-steroidal mycotoxins that is often found in pre- and post-harvest crops. Crops contamination with ZEN and animal exposure to it via contaminated feed, is a global health and economic concern. The European Union has established various preventive programs to control ZEN contamination, and regulations on the maximum levels of ZEN in food and feed. Electrochemical (bio)sensors are a very promising alternative to sensitive but sophisticated and expensive chromatographic techniques. In the current review, recent developments towards electrochemical sensing of ZEN, sorted by type of transducer, their design, development, and approbation/validation are discussed, and the use of specialized electrochemical instrumentation is highlighted.


Assuntos
Zearalenona/química , Ração Animal , Animais , Técnicas Eletroquímicas , Contaminação de Alimentos/análise , Humanos , Micotoxinas/química
2.
Compr Rev Food Sci Food Saf ; 19(4): 1605-1657, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33337102

RESUMO

Bacterial toxins are food safety hazards causing about 10% of all reported foodborne outbreaks in Europe. Pertinent to Gram-positive pathogens, the most relevant toxins are emetic toxin and diarrheal enterotoxins of Bacillus cereus, neurotoxins of Clostridium botulinum, enterotoxin of Clostridium perfringens, and a family of enterotoxins produced by Staphylococcus aureus and some other staphylococci. These toxins are the most important virulence factors of respective foodborne pathogens and a primary cause of the related foodborne diseases. They are proteins or peptides that differ from each other in their size, structure, toxicity, toxicological end points, solubility, and stability, types of food matrix to which they are mostly related to. These differences influence the characteristics of required detection methods. Therefore, detection of these toxins in food samples, or detection of toxin production capacity in the bacterial isolate, remains one of the cornerstones of microbial food analysis and an essential tool in understanding the relevant properties of these toxins. Advanced research has led into new insights of the incidence of toxins, mechanisms of their production, their physicochemical properties, and their toxicological mode of action and dose-response profile. This review focuses on biological, immunological, mass spectrometry, and molecular assays as the most commonly used detection and quantification methods for toxins of B. cereus, C. botulinum, C. perfringens, and S. aureus. Gathered and analyzed information provides a comprehensive blueprint of the existing knowledge on the principles of these assays, their application in food safety, limits of detection and quantification, matrices in which they are applicable, and type of information they provide to the user.


Assuntos
Toxinas Bacterianas/análise , Enterotoxinas/análise , Bactérias Gram-Positivas , Contaminação de Alimentos/análise , Inocuidade dos Alimentos/métodos , Doenças Transmitidas por Alimentos/etiologia
3.
Talanta ; 191: 202-208, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30262050

RESUMO

A highly sensitive flow-injection capacitive immunosensor was developed for detection of the mycotoxin zearalenone (ZEN). Different strategies for immobilization of an anti-ZEN antibody on the surface of a gold electrode, i.e. polytyramine or self-assembled monolayers (SAMs) of 3-mercaptopropionic acid (3-MPA) and lipoic acid (LA), were used and their performances were compared. The LA- and 3-MPA-based systems showed broad linear ranges for ZEN determination, i.e. from 0.010 nM to 10 nM and from 0.020 nM to 10 nM, respectively. Under optimal conditions, the LA-based immunosensor was capable of performing up till 13 regeneration-interaction cycles (with use of glycine HCl, pH 2.4) with a limit of detection (LOD) of 0.0060 nM, equivalent to 1.9 pg mL-1. It also demonstrated a good inter-assay precision (RSD < 10%). However, the tyramine-based capacitive immunosensor showed a bad repeatability (only 4 regeneration-interaction cycles were possible) and inter-assay precision (RSD > 15%) which did not allow sensitive and precise measurements. The LA-based method was compared with a direct ELISA. These results demonstrated that the label-free developed capacitive immunosensor had a better sensitivity and shorter analysis time in comparison with the direct microwell-plate format.

4.
Anal Chim Acta ; 955: 48-57, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28088280

RESUMO

Quantum dots (QDs) and colloidal gold nanoparticles (CG) were evaluated as labels for multiplex lateral flow immunoassay (LFIA) for determination of mycotoxins deoxynivalenol (DON), zearalenone (ZEN) and T2/HT2-toxin (T2/HT2) in cereal matrices. Both developed assays were based on the same immunoreagents (except for the labels), therefore their analytical characteristics could be objectively compared. For both LFIAs antigens (DON-ovalbumin (OVA), ZEN-OVA and T2-OVA) and rabbit anti-mouse immunoglobulin were immobilized on a nitrocellulose membrane as three test lines and one control line, respectively. Depending on the LFIA, monoclonal antibodies (mAb) against DON, ZEN and T2 were conjugated with CdSeS/ZnS QDs or CG. T2 and HT2 were detected by one test line (T2-OVA) with an anti-T2 mAb which showed 110% cross-reactivity with HT2. Both tests were developed in accordance with the legal limits and were developed in such a way that they had the same cut-off limits of 1000 µg kg-1, 80 µg kg-1 and 80 µg kg-1 for DON, ZEN and T2/HT2, respectively in order to allow a correct comparison. Applicability of these assays was demonstrated by analysis of naturally contaminated wheat samples. The results demonstrate that both the LFIAs can be used as rapid, cost-effective and convenient qualitative tool for on-site screening for simultaneous detection of DON, ZEN and HT2/T2 in wheat without special instrumentation. However, the QD-based LFIA consumed less immunoreagents and was more sensitive and economically beneficial. In addition, the results were easier to interpret, resulting in a lower false negative rate (<5%) which was in good agreement with Commission Decision 2002/657/EC regarding the performance of analytical methods intended for screening purposes.


Assuntos
Contaminação de Alimentos/análise , Coloide de Ouro , Micotoxinas/análise , Pontos Quânticos , Anticorpos Imobilizados , Grão Comestível , Nanopartículas Metálicas , Tricotecenos/análise , Zearalenona/análise
5.
J Agric Food Chem ; 65(33): 7121-7130, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27936756

RESUMO

A multiplex lateral flow immunoassay (LFIA) for the determination of the mycotoxins deoxynivalenol, zearalenone, and T2/HT2-toxin in barley was developed with luminescent quantum dots (QDs) as label. The synthesized QDs were hydrophilized by two strategies, that is, coating with an amphiphilic polymer or silica. The water-soluble QDs were compared with regard to their bioconjugation with monoclonal antibody (mAb) and were tested on a LFIA. Silica-coated QDs that contained epoxy groups were most promising. Therefore, green, orange, and red epoxy-functionalized silica-coated QDs were conjugated with anti-ZEN, anti-DON, and anti-T2 mAb, respectively. The LFIA was developed in accordance with the European Commission legal limits with cutoff limits of 1000, 80, and 80 µg/kg for deoxynivalenol, zearalenone, and T2/HT2-toxin, respectively. The LFIA gave a fast result (15 min) with a low false-negative rate (<5%), and the results were easy to interpret without any sophisticated equipment.


Assuntos
Hordeum/química , Imunoensaio/métodos , Micotoxinas/análise , Imunoensaio/instrumentação , Limite de Detecção , Pontos Quânticos
6.
Talanta ; 160: 66-71, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591588

RESUMO

A sensitive tool for simultaneous quantitative determination of three analytes in one single well of a microtiter plate is shown for the first time. The developed technique is based on use of colloidal quantum dot enrobed into a silica shell (QD@SiO2) derivatives as a highly responsive label. Silica-coated quantum dots were prepared and subsequently modified via the co-hydrolysis with tetraethylorthosilicate (TEOS) and various organosilane reagents. Different surface modification schemes were compared in terms of applicability of the obtained particles for the multiplex immunoassay, e.g. stability and simplicity of their conjugation with biomolecules. As model system a multiplex immunosorbent assay for screening of three mycotoxins (deoxynivalenol, zearalenone and aflatoxin B1) in cereal-based products was realized via a co-immobilization of three different specific antibodies (anti- deoxynivalenol, anti-zearalenone and anti-aflatoxin B1) in one single well of a microtiter plate. Mycotoxins were simultaneously determined by labelling their conjugates with QD@SiO2 emitting in different parts of the visible spectrum. The limits of detection for the simultaneous determination were 6.1 and 5.3, 5.4 and 4.1, and 2.6 and 1.9µgkg(-1) for deoxynivalenol, zearalenone and aflatoxin B1 in maize and wheat, respectively. As confirmatory method, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used.


Assuntos
Contaminação de Alimentos/análise , Micotoxinas/análise , Pontos Quânticos/química , Dióxido de Silício/química , Triticum/química , Zea mays/química , Cromatografia Líquida , Imunoensaio , Imunoglobulina G/imunologia , Micotoxinas/química , Micotoxinas/imunologia , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA