Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(1): 113639, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175753

RESUMO

The nuclear cap-binding complex (CBC) coordinates co-transcriptional maturation, transport, or degradation of nascent RNA polymerase II (Pol II) transcripts. CBC with its partner ARS2 forms mutually exclusive complexes with diverse "effectors" that promote either productive or destructive outcomes. Combining AlphaFold predictions with structural and biochemical validation, we show how effectors NCBP3, NELF-E, ARS2, PHAX, and ZC3H18 form competing binary complexes with CBC and how PHAX, NCBP3, ZC3H18, and other effectors compete for binding to ARS2. In ternary CBC-ARS2 complexes with PHAX, NCBP3, or ZC3H18, ARS2 is responsible for the initial effector recruitment but inhibits their direct binding to the CBC. We show that in vivo ZC3H18 binding to both CBC and ARS2 is required for nuclear RNA degradation. We propose that recruitment of PHAX to CBC-ARS2 can lead, with appropriate cues, to competitive displacement of ARS2 and ZC3H18 from the CBC, thus promoting a productive rather than a degradative RNA fate.


Assuntos
Complexo Proteico Nuclear de Ligação ao Cap , RNA , Ligação Competitiva , Complexo Proteico Nuclear de Ligação ao Cap/química , RNA/genética , RNA Polimerase II/metabolismo , RNA Nuclear
2.
STAR Protoc ; 4(2): 102265, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37200196

RESUMO

Stiffness plays a central action in plant cell extension. Here, we present a protocol to detect changes in stiffness on the external epidermal cell wall of living plant roots using atomic force microscopy (AFM). We provide generalized instructions for collecting force-distance curves and analysis of stiffness using contact-based mechanical model. With this protocol, and some initial training in AFM, a user is able to perform indentation experiments on 4- and 5-day-old Arabidopsis thaliana and determine stiffness properties. For complete details on the use and execution of this protocol, please refer to Godon et al.1.

3.
Nat Commun ; 13(1): 4969, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002457

RESUMO

To eliminate specific or aberrant transcripts, eukaryotes use nuclear RNA-targeting complexes that deliver them to the exosome for degradation. S. pombe MTREC, and its human counterpart PAXT, are key players in this mechanism but inner workings of these complexes are not understood in sufficient detail. Here, we present an NMR structure of an MTREC scaffold protein Red1 helix-turn-helix domain bound to the Iss10 N-terminus and show this interaction is required for proper cellular growth and meiotic mRNA degradation. We also report a crystal structure of a Red1-Ars2 complex explaining mutually exclusive interactions of hARS2 with various ED/EGEI/L motif-possessing RNA regulators, including hZFC3H1 of PAXT, hFLASH or hNCBP3. Finally, we show that both Red1 and hZFC3H1 homo-dimerize via their coiled-coil regions indicating that MTREC and PAXT likely function as dimers. Our results, combining structures of three Red1 interfaces with in vivo studies, provide mechanistic insights into conserved features of MTREC/PAXT architecture.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Transporte/metabolismo , Humanos , Meiose , RNA/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
FEBS J ; 285(1): 160-177, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29148177

RESUMO

EngA is a conserved bacterial GTPase involved in ribosome biogenesis. While essential in bacteria, EngA does not have any human orthologue and can thus be an interesting target for new antibacterial compounds. EngA is the only known GTPase bearing two G domains, making unique its catalytic cycle and the induced modulation of its conformation and interaction with the ribosome. We have investigated nucleotide-induced conformational changes in EngA in order to unveil their role in ribosome binding. SAXS and limited proteolysis were used to probe EngA conformational changes, and revealed a change in protein structure and a distinct rate of proteolysis induced by GTP. Structure analysis showed that the conformation adopted in solution in the presence of GTP does not match any known EngA structure, while the SAXS data measured in the presence of GDP are in perfect agreement with two crystal structures (i.e. 2HGJ and 4DCU). Combination of mass spectrometry and N-terminal sequencing for the analysis of the fragmentation pattern upon proteolytic cleavage gave insights into which regions become more or less accessible in the different nucleotide-bound states. Interactions studies confirmed a stronger binding of EngA to the bacterial ribosome in the presence of GTP and suggest that the induced change in conformation of EngA plays a key role for ribosome binding.


Assuntos
Proteínas de Bactérias/química , GTP Fosfo-Hidrolases/química , Guanosina Trifosfato/farmacologia , Conformação Proteica/efeitos dos fármacos , Ribossomos/química , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ribossomos/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
J Mol Biol ; 429(20): 3056-3074, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28890133

RESUMO

Fine tuning of signaling pathways is essential for cells to cope with sudden environmental variations. This delicate balance is maintained in particular by protein kinases that control the activity of target proteins by reversible phosphorylation. In addition to homologous eukaryotic enzymes, bacteria have evolved some specific Ser/Thr/Tyr protein kinases without any structural resemblance to their eukaryotic counterparts. Here, we show that a previously identified family of ATPases, broadly conserved among bacteria, is in fact a new family of protein kinases with a Ser/Thr/Tyr kinase activity. A prototypic member of this family, YdiB from Bacillus subtilis, is able to autophosphorylate and to phosphorylate a surrogate substrate, the myelin basic protein. Two crystal structures of YdiB were solved (1.8 and 2.0Å) that display a unique ATP-binding fold unrelated to known protein kinases, although a conserved HxD motif is reminiscent of that found in Hanks-type protein kinases. The effect of mutations of conserved residues further highlights the unique nature of this new protein kinase family that we name ubiquitous bacterial kinase. We investigated the cellular role of YdiB and showed that a ∆ydiB mutant was more sensitive to paraquat treatment than the wild type, with ~13% of cells with an aberrant morphology. In addition, YdiE, which is known to participate with both YdiC and YdiB in an essential chemical modification of some specific tRNAs, is phosphorylated in vitro by YdiB. These results expand the boundaries of the bacterial kinome and support the involvement of YdiB in protein translation and resistance to oxidative stress in B. subtilis.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas Quinases/química , Proteínas Quinases/genética , Bacillus subtilis/citologia , Bacillus subtilis/efeitos dos fármacos , Cristalografia por Raios X , Deleção de Genes , Oxidantes/toxicidade , Estresse Oxidativo , Paraquat/toxicidade , Fosforilação , Processamento de Proteína Pós-Traducional
6.
PLoS One ; 7(10): e46795, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056455

RESUMO

EngA proteins form a unique family of bacterial GTPases with two GTP-binding domains in tandem, namely GD1 and GD2, followed by a KH (K-homology) domain. They have been shown to interact with the bacterial ribosome and to be involved in its biogenesis. Most prokaryotic EngA possess a high GTPase activity in contrast to eukaryotic GTPases that act mainly as molecular switches. Here, we have purified and characterized the GTPase activity of the Bacillus subtilis EngA and two shortened EngA variants that only contain GD1 or GD2-KH. Interestingly, the GTPase activity of GD1 alone is similar to that of the whole EngA, whereas GD2-KH has a 150-fold lower GTPase activity. At physiological concentration, potassium strongly stimulates the GTPase activity of each protein construct. Interestingly, it affects neither the affinities for nucleotides nor the monomeric status of EngA or the GD1 domain. Thus, potassium likely acts as a chemical GTPase-activating element as proposed for another bacterial GTPase like MnmE. However, unlike MnmE, potassium does not promote dimerization of EngA. In addition, we solved two crystal structures of full-length EngA. One of them contained for the first time a GTP-like analogue bound to GD2 while GD1 was free. Surprisingly, its overall fold was similar to a previously solved structure with GDP bound to both sites. Our data indicate that a significant structural change must occur upon K(+) binding to GD2, and a comparison with T. maritima EngA and MnmE structures allowed us to propose a model explaining the chemical basis for the different GTPase activities of GD1 and GD2.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Ativadores de GTP Fosfo-Hidrolase/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Potássio/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , GTP Fosfo-Hidrolases/genética
7.
Microbiology (Reading) ; 155(Pt 3): 944-956, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19246765

RESUMO

Characterization of 'unknown' proteins is one of the challenges of the post-genomic era. Here, we report a study of Bacillus subtilis YdiB, which belongs to an uncharted class of bacterial P-loop ATPases. Precise deletion of the ydiB gene yielded a mutant with much reduced growth rate compared to the wild-type strain. In vitro, purified YdiB was in equilibrium among different forms, monomers, dimers and oligomers, and this equilibrium was strongly affected by salts; high concentrations of NaCl favoured the monomeric over the oligomeric form of the enzyme. Interestingly, the ATPase activity of the monomer was about three times higher than that of the oligomer, and the monomer showed a K(m) of about 60 microM for ATP and a V(max) of about 10 nmol min(-1) (mg protein)(-1) (k(cat) approximately 10 h(-1)). This low ATPase activity was shown to be specific to YdiB because mutation of an invariant lysine residue in the P-loop motif (K41A) strongly attenuated this rate. This mutant was unable to restore a normal growth phenotype when introduced into a conditional knockout strain for ydiB, showing that the ATPase activity of YdiB is required for the in vivo function of the protein. Oligomerization was also observed with the purified YjeE from Escherichia coli, a YdiB orthologue, suggesting that this property is shared by all members of this family of ATPases. Importantly, dimers of YdiB were also observed in a B. subtilis extract, or when stabilized by formaldehyde cross-linking for YjeE from E. coli, suggesting that oligomerization might regulate the function of this new class of proteins in vivo.


Assuntos
Adenosina Trifosfatases/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Multimerização Proteica , Adenosina Trifosfatases/genética , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Técnicas de Inativação de Genes
8.
J Bacteriol ; 190(2): 681-90, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17981968

RESUMO

YsxC is a small GTPase of Bacillus subtilis with essential but still unknown function, although recent works have suggested that it might be involved in ribosome biogenesis. Here, purified YsxC overexpressed in Escherichia coli was found to be partly associated with high-molecular-weight material, most likely rRNA, and thus eluted from gel filtration as a large complex. In addition, purification of ribosomes from an E. coli strain overexpressing YsxC allowed the copurification of the YsxC protein. Purified YsxC was shown to bind preferentially to the 50S subunit of B. subtilis ribosomes; this interaction was modulated by nucleotides and was stronger in the presence of a nonhydrolyzable GTP analogue than with GTP. Far-Western blotting analysis performed with His(6)-YsxC and ribosomal proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that YsxC interacted with at least four ribosomal proteins from the 50S subunit. Two of these putative protein partners were identified by mass spectrometry as L1 and L3, while the third reactive band in the one-dimensional gel contained L6 and L10. The fourth band that reacted with YsxC contained a mixture of three proteins, L7/L12, L23, and L27, suggesting that at least one of them binds to YsxC. Coimmobilization assays confirmed that L1, L6, and L7/L12 interact with YsxC. Together, these results suggest that YsxC plays a role in ribosome assembly.


Assuntos
Bacillus subtilis/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/isolamento & purificação , Ligação Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribossomos/química
9.
J Bacteriol ; 188(23): 8252-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16997968

RESUMO

GTPases have been demonstrated to be necessary for the proper assembly of the ribosome in bacteria and eukaryotes. Here, we show that the essential GTPases YphC and YsxC are required for large ribosomal subunit biogenesis in Bacillus subtilis. Sucrose density gradient centrifugation of large ribosomal subunits isolated from YphC-depleted cells and YsxC-depleted cells indicates that they are similar to the 45S intermediate previously identified in RbgA-depleted cells. The sedimentation of the large-subunit intermediate isolated from YphC-depleted cells was identical to the intermediate found in RbgA-depleted cells, while the intermediate isolated from YsxC-depleted cells sedimented slightly slower than 45S, suggesting that it is a novel intermediate. Analysis of the protein composition of the large-subunit intermediates isolated from either YphC-depleted cells or YsxC-depleted cells indicated that L16 and L36 are missing. Purified YphC and YsxC are able to interact with the ribosome in vitro, supporting a direct role for these two proteins in the assembly of the 50S subunit. Our results indicate that, as has been demonstrated for Saccharomyces cerevisiae ribosome biogenesis, bacterial 50S ribosome assembly requires the function of multiple essential GTPases.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/fisiologia , GTP Fosfo-Hidrolases/fisiologia , Proteínas Ribossômicas/biossíntese , Ribossomos/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/biossíntese , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Deleção de Genes , Genes Bacterianos , Modelos Moleculares , Ribossomos/química
10.
J Biol Chem ; 280(44): 36857-64, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16107340

RESUMO

The ATP-binding cassette is the most abundant family of transporters including many medically relevant members and gathers both importers and exporters involved in the transport of a wide variety of substrates. Although three high resolution three-dimensional structures have been obtained for a prototypic exporter, MsbA, two have been subjected to much criticism. Here, conformational changes of BmrA, a multidrug bacterial transporter structurally related to MsbA, have been studied. A three-dimensional model of BmrA, based on the "open" conformation of Escherichia coli MsbA, was probed by simultaneously introducing two cysteine residues, one in the first intracellular loop of the transmembrane domain and the other in the Q-loop of the nucleotide-binding domain (NBD). Intramolecular disulfide bonds could be created in the absence of any effectors, which prevented both drug transport and ATPase activity. Interestingly, addition of ATP/Mg plus vanadate strongly prevented this bond formation in a cysteine double mutant, whereas ATP/Mg alone was sufficient when the ATPase-inactive E504Q mutation was also introduced, in agreement with additional BmrA models where the ATP-binding sites are positioned at the NBD/NBD interface. Furthermore, cross-linking between the two cysteine residues could still be achieved in the presence of ATP/Mg plus vanadate when homobifunctional cross-linkers separated by more than 13 Angstrom were added. Altogether, these results give support to the existence, in the resting state, of a monomeric conformation of BmrA similar to that found within the open MsbA dimer and show that a large motion is required between intracellular loop 1 and the nucleotide-binding domain for the proper functioning of a multidrug ATP-binding cassette transporter.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Benzimidazóis/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Dobramento de Proteína , Transportadores de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Transporte Biológico , Catálise , Reagentes de Ligações Cruzadas/metabolismo , Dimerização , Dissulfetos , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...