Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(9): e70137, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39263462

RESUMO

Feeding ecology is an essential component of an organism's life, but foraging comes with risks and energetic costs. Species in which populations exhibit more than one feeding strategy, such as sea turtles, are good systems for investigating how feeding ecology impacts life-history traits, reproduction and carried over effects across generations. Here, we investigated how the feeding ecology of loggerhead sea turtles (Caretta caretta) nesting at the Cabo Verde archipelago correlates with reproductive outputs and offspring quality. We determined the feeding ecology of female turtles before and during the breeding season from stable isotope analysis of carbon and nitrogen and correlated isotopic ratio with female and offspring traits. We found that female turtles feeding at higher trophic positions produced larger clutches. We also found that females with higher δ13C values, typical of productive foraging areas, had greater fat reserves, were less likely to be infected by leech parasites and produced heavier offspring. The offspring of infected mothers with higher δ13C values performed best in crawling and self-righting trials than those of non-infected mothers with higher δ13C values. This study shows adult female loggerheads that exploit productive areas build capital reserves that impact their reproductive success and multiple proxies for offspring quality. Overall, our findings provide valuable insights into the complex interplay between feeding ecology and reproductive success, and reveal the transgenerational carry-over effects of both feeding ecology and health on offspring quality in sea turtles.

2.
Sci Rep ; 10(1): 18569, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122760

RESUMO

Long-term monitoring of host-parasite interactions is important for understanding the consequences of infection on host fitness and population dynamics. In an eight-year survey of the loggerhead sea turtle (Caretta caretta) population nesting in Cabo Verde, we determined the spatiotemporal variation of Ozobranchus margoi, a sanguivorous leech best known as a vector for sea turtle fibropapilloma virus. We quantified O. margoi association with turtles' δ15N and δ13C stable isotopes to identify where infection occurs. We then measured the influence of infection on reproduction and offspring fitness. We found that parasite prevalence has increased from 10% of the population in 2010, to 33% in 2017. Stable isotope analysis of host skin samples suggests transmission occurs within the host's feeding grounds. Interestingly, we found a significant interaction between individual size and infection on the reproductive success of turtles. Specifically, small, infected females produced fewer offspring of poorer condition, while in contrast, large, infected turtles produced greater clutch sizes and larger offspring. We interpret this interaction as evidence, upon infection, for a size-dependent shift in reproductive strategy from bet hedging to terminal investment, altering population dynamics. This link between infection and reproduction underscores the importance of using long-term monitoring to quantify the impact of disease dynamics over time.


Assuntos
Doenças Parasitárias em Animais/fisiopatologia , Tartarugas/parasitologia , Animais , Ecologia , Feminino , Interações Hospedeiro-Parasita , Sanguessugas/crescimento & desenvolvimento , Sanguessugas/fisiologia , Sanguessugas/virologia , Dinâmica Populacional , Reprodução , Tartarugas/crescimento & desenvolvimento , Tartarugas/fisiologia
3.
Biol Lett ; 14(10)2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355679

RESUMO

Ocean noise varies spatially and temporally and is driven by natural and anthropogenic processes. Increased ambient noise levels can cause signal masking and communication impairment, affecting fitness and recruitment success. However, the effects of increasing ambient noise levels on marine species, such as marine mammals that primarily rely on sound for communication, are not well understood. We investigated the effects of concurrent ambient noise levels on social whistle calls produced by bottlenose dolphins (Tursiops truncatus) in the western North Atlantic. Elevated ambient noise levels were mainly caused by ship noise. Increases in ship noise, both within and below the dolphins' call bandwidth, resulted in higher dolphin whistle frequencies and a reduction in whistle contour complexity, an acoustic feature associated with individual identification. Consequently, the noise-induced simplification of dolphin whistles may reduce the information content in these acoustic signals and decrease effective communication, parent-offspring proximity or group cohesion.


Assuntos
Golfinho Nariz-de-Garrafa/fisiologia , Ruído/efeitos adversos , Vocalização Animal/fisiologia , Acústica , Animais , Oceanos e Mares , Navios , Espectrografia do Som
4.
J Acoust Soc Am ; 144(2): 931, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30180661

RESUMO

Passive acoustic monitoring (PAM) is a widely used technique for studying the distribution and habitat use of cetaceans. The C-POD, an acoustic sensor with an onboard automated click detector, has been deployed in diverse acoustic environments, but studies verifying its offshore detection rates and factors affecting detection probability are scarce. To empirically evaluate the performance of C-PODs in detecting bottlenose dolphins (Tursiops truncatus), C-PODs were deployed alongside archival acoustic recorders 12-30 km offshore in the Northwest Atlantic Ocean. The C-POD and acoustic recordings, post-processed using PAMGUARD software, were compared for a period of 6852 h. C-POD false positive rates were very low (mean 0.003%), and positive hourly detection accuracy was very high (mean 99.6%). Analysis of the acoustic environment and dolphin click characteristics revealed that true positive detections by C-PODs were significantly more likely to occur when PAMGUARD detected more clicks and there was increased high frequency noise (>20 kHz), likely from distant or unclassified clicks. C-PODs were found to be reliable indicators of dolphin presence at hourly or greater time scales. These results support the application of C-PODs in PAM studies that aim to investigate patterns of dolphin occurrence, such as those related to offshore windfarms.


Assuntos
Acústica/instrumentação , Golfinho Nariz-de-Garrafa/fisiologia , Vocalização Animal , Animais , Automação/instrumentação , Ecolocação , Ruído/efeitos adversos , Sensibilidade e Especificidade , Razão Sinal-Ruído
5.
PLoS One ; 11(12): e0166670, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27923044

RESUMO

Observations of killer whales (Orcinus orca) feeding on the remains of beaked whales have been previously documented; however, to date, there has been no published account of killer whales actively preying upon beaked whales. This article describes the first field observations of killer whales interacting with, hunting and preying upon beaked whales (Mesoplodon spp.) on four separate occasions during 2014, 2015 and 2016 in the Bremer Sub-Basin, off the south coast of Western Australia.


Assuntos
Comportamento Predatório , Orca/fisiologia , Animais , Comportamento Alimentar , Austrália Ocidental , Baleias
7.
PLoS One ; 10(9): e0136535, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26352429

RESUMO

To date, there has been no dedicated study in Australian waters on the acoustics of killer whales. Hence no information has been published on the sounds produced by killer whales from this region. Here we present the first acoustical analysis of recordings collected off the Western Australian coast. Underwater sounds produced by Australian killer whales were recorded during the months of February and March 2014 and 2015 in the Bremer Canyon in Western Australia. Vocalisations recorded included echolocation clicks, burst-pulse sounds and whistles. A total of 28 hours and 29 minutes were recorded and analysed, with 2376 killer whale calls (whistles and burst-pulse sounds) detected. Recordings of poor quality or signal-to-noise ratio were excluded from analysis, resulting in 142 whistles and burst-pulse vocalisations suitable for analysis and categorisation. These were grouped based on their spectrographic features into nine Bremer Canyon (BC) "call types". The frequency of the fundamental contours of all call types ranged from 600 Hz to 29 kHz. Calls ranged from 0.05 to 11.3 seconds in duration. Biosonar clicks were also recorded, but not studied further. Surface behaviours noted during acoustic recordings were categorised as either travelling or social behaviour. A detailed description of the acoustic characteristics is necessary for species acoustic identification and for the development of passive acoustic tools for population monitoring, including assessments of population status, habitat usage, migration patterns, behaviour and acoustic ecology. This study provides the first quantitative assessment and report on the acoustic features of killer whales vocalisations in Australian waters, and presents an opportunity to further investigate this little-known population.


Assuntos
Vocalização Animal , Orca/psicologia , Distribuição Animal , Animais , Ecolocação , Comportamento Alimentar , Oceano Índico , Comportamento Social , Espectrografia do Som , Vocalização Animal/classificação , Austrália Ocidental , Orca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA