Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753231

RESUMO

Loss of proteostasis is a highly conserved feature of aging across model organisms and results in the accumulation of insoluble protein aggregates. Protein insolubility is also a unifying feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), in which hundreds of insoluble proteins associate with aggregated amyloid beta (Aß) in senile plaques. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven generalized protein insolubility as a contributing factor. However, proteins that become insoluble during aging in model organisms are capable of accelerating Aß aggregation in vitro and lifespan in vivo. Here, using an unbiased proteomics approach, we questioned the relationship between Aß and age-related protein insolubility. Specifically, we uncovered that Aß expression drives proteome-wide protein insolubility in C. elegans, even in young animals, and this insoluble proteome is highly similar to the insoluble proteome driven by normal aging, this vulnerable sub-proteome we term the core insoluble proteome (CIP). We show that the CIP is enriched with proteins that modify Aß toxicity in vivo, suggesting the possibility of a vicious feedforward cycle in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the geroprotective, gut-derived metabolite, Urolithin A, relieves Aß toxicity, supporting its use in clinical trials for dementia and age-related diseases.

2.
Geroscience ; 46(2): 2239-2251, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37923874

RESUMO

The Caenorhabditis Intervention Testing Program (CITP) is an NIH-funded research consortium of investigators who conduct analyses at three independent sites to identify chemical interventions that reproducibly promote health and lifespan in a robust manner. The founding principle of the CITP is that compounds with positive effects across a genetically diverse panel of Caenorhabditis species and strains are likely engaging conserved biochemical pathways to exert their effects. As such, interventions that are broadly efficacious might be considered prominent compounds for translation for pre-clinical research and human clinical applications. Here, we report results generated using a recently streamlined pipeline approach for the evaluation of the effects of chemical compounds on lifespan and health. We studied five compounds previously shown to extend C. elegans lifespan or thought to promote mammalian health: 17α-estradiol, acarbose, green tea extract, nordihydroguaiaretic acid, and rapamycin. We found that green tea extract and nordihydroguaiaretic acid extend Caenorhabditis lifespan in a species-specific manner. Additionally, these two antioxidants conferred assay-specific effects in some studies-for example, decreasing survival for certain genetic backgrounds in manual survival assays in contrast with extended lifespan as assayed using automated C. elegans Lifespan Machines. We also observed that GTE and NDGA impact on older adult mobility capacity is dependent on genetic background, and that GTE reduces oxidative stress resistance in some Caenorhabditis strains. Overall, our analysis of the five compounds supports the general idea that genetic background and assay type can influence lifespan and health effects of compounds, and underscores that lifespan and health can be uncoupled by chemical interventions.


Assuntos
Antioxidantes , Caenorhabditis , Animais , Humanos , Idoso , Antioxidantes/farmacologia , Masoprocol/farmacologia , Masoprocol/metabolismo , Caenorhabditis elegans/genética , Longevidade , Promoção da Saúde , Extratos Vegetais/farmacologia , Chá/metabolismo , Mamíferos
3.
Nat Aging ; 3(12): 1529-1543, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957360

RESUMO

Autophagy-lysosomal function is crucial for maintaining healthy lifespan and preventing age-related diseases. The transcription factor TFEB plays a key role in regulating this pathway. Decreased TFEB expression is associated with various age-related disorders, making it a promising therapeutic target. In this study, we screened a natural product library and discovered mitophagy-inducing coumarin (MIC), a benzocoumarin compound that enhances TFEB expression and lysosomal function. MIC robustly increases the lifespan of Caenorhabditis elegans in an HLH-30/TFEB-dependent and mitophagy-dependent manner involving DCT-1/BNIP3 while also preventing mitochondrial dysfunction in mammalian cells. Mechanistically, MIC acts by inhibiting ligand-induced activation of the nuclear hormone receptor DAF-12/FXR, which, in turn, induces mitophagy and extends lifespan. In conclusion, our study uncovers MIC as a promising drug-like molecule that enhances mitochondrial function and extends lifespan by targeting DAF-12/FXR. Furthermore, we discovered DAF-12/FXR as a previously unknown upstream regulator of HLH-30/TFEB and mitophagy.


Assuntos
Proteínas de Caenorhabditis elegans , Mitofagia , Animais , Longevidade/genética , Caenorhabditis elegans/genética , Autofagia , Receptores Citoplasmáticos e Nucleares/genética , Mamíferos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
4.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37398058

RESUMO

Alzheimer's disease and Alzheimer's related diseases (ADRD) are a class of prevalent age-related neurodegenerative disorders characterized by the accumulation of amyloid- ß (Aß) plaques and Tau neurofibrillary tangles. The intricate interplay between Aß and Tau proteins requires further investigation to better understand the precise mechanisms underlying disease pathology. The nematode Caenorhabditis elegans ( C. elegans ) serves as an invaluable model organism for studying aging and neurodegenerative diseases. Here we performed an unbiased systems analysis of a C. elegans strain expressing both Aß and Tau proteins within neurons. Intriguingly, even at an early stage of adulthood, we observed reproductive impairments and mitochondrial dysfunction consistent with substantial disruptions in mRNA transcript abundance, protein solubility, and metabolite levels. Notably, the simultaneous expression of these two neurotoxic proteins exhibited a synergistic effect, leading to accelerated aging in the model organism. Our comprehensive findings shed new light on the intricate relationship between normal aging processes and the etiology of ADRD. Specifically, we demonstrate the alterations to metabolic functions precede age-related neurotoxicity, offering critical insights into potential therapeutic strategies.

5.
bioRxiv ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-37503138

RESUMO

Loss of proteostasis is a highly conserved feature of aging across model organisms and typically results in the accumulation of insoluble protein aggregates. Protein insolubility is a central feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), where hundreds of insoluble proteins associate with aggregated amyloid beta (Aß) in senile plaques. Moreover, proteins that become insoluble during aging in model organisms are capable of accelerating Aß aggregation in vitro. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven protein insolubility as a contributory factor. Here, using an unbiased proteomics approach, we questioned the relationship between Aß and age-related protein insolubility. We demonstrate that Aß expression drives proteome-wide protein insolubility in C. elegans and this insoluble proteome closely resembles the insoluble proteome driven by normal aging, suggesting the possibility of a vicious feedforward cycle of aggregation in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the CIP is enriched with proteins that modulate the toxic effects of Aß and that the gut-derived metabolite, Urolithin A, relieves Aß toxicity, supporting its use in clinical trials for dementia and other age-related diseases.

6.
Science ; 380(6649): eabn9257, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37289866

RESUMO

Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.


Assuntos
Envelhecimento , Taurina , Animais , Humanos , Camundongos , Envelhecimento/sangue , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Senescência Celular , Haplorrinos , Longevidade/efeitos dos fármacos , Longevidade/fisiologia , Taurina/sangue , Taurina/deficiência , Taurina/farmacologia , Suplementos Nutricionais , Dano ao DNA/efeitos dos fármacos , Telomerase/metabolismo
7.
Geroscience ; 45(2): 1237-1245, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36018536

RESUMO

Lysosomes are crucial for degradation and recycling of damaged proteins and cellular components. Therapeutic strategies enhancing lysosomal function are a promising approach for aging and age-related neurodegenerative diseases. Here, we show that an FDA approved drug sodium polystyrene sulfonate (SPS), used to reduce high blood potassium in humans, enhances lysosomal function both in C. elegans and in human neuronal cells. Enhanced lysosomal function following SPS treatment is accompanied by the suppression of proteotoxicity caused by expression of the neurotoxic peptides Aß and TAU. Additionally, treatment with SPS imparts health benefits as it significantly increases lifespan in C. elegans. Overall our work supports the potential use of SPS as a prospective geroprotective intervention.


Assuntos
Caenorhabditis elegans , Potássio , Animais , Humanos , Potássio/metabolismo , Estudos Prospectivos , Lisossomos/metabolismo
8.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-35903774

RESUMO

We used CRISPR/Cas9 gene editing in C. elegans in order to fluorescently tag endogenous aconitase-2 (ACO-2). ACO-2 is a mitochondrially localized protein, and the aco-2::gfp strain enabled the examination of native mitochondrial morphology in live animals. Here we validate that the aco-2::gfp strain displays the prototypic changes in mitochondrial morphology known to occur during aging and upon paraquat (PQ) induced mitochondrial stress. We also provide evidence that the ACO-2::GFP reporter can serve as a superior means for tracking mitochondrial morphology than conventional MitoTracker dyes-especially in aged-worms.

9.
Aging Cell ; 21(1): e13488, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837316

RESUMO

Metformin, the most commonly prescribed anti-diabetes medication, has multiple reported health benefits, including lowering the risks of cardiovascular disease and cancer, improving cognitive function with age, extending survival in diabetic patients, and, in several animal models, promoting youthful physiology and lifespan. Due to its longevity and health effects, metformin is now the focus of the first proposed clinical trial of an anti-aging drug-the Targeting Aging with Metformin (TAME) program. Genetic variation will likely influence outcomes when studying metformin health effects in human populations. To test for metformin impact in diverse genetic backgrounds, we measured lifespan and healthspan effects of metformin treatment in three Caenorhabditis species representing genetic variability greater than that between mice and humans. We show that metformin increases median survival in three C. elegans strains, but not in C. briggsae and C. tropicalis strains. In C. briggsae, metformin either has no impact on survival or decreases lifespan. In C. tropicalis, metformin decreases median survival in a dose-dependent manner. We show that metformin prolongs the period of youthful vigor in all C. elegans strains and in two C. briggsae strains, but that metformin has a negative impact on the locomotion of C. tropicalis strains. Our data demonstrate that metformin can be a robust promoter of healthy aging across different genetic backgrounds, but that genetic variation can determine whether metformin has positive, neutral, or negative lifespan/healthspan impact. These results underscore the importance of tailoring treatment to individuals when testing for metformin health benefits in diverse human populations.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Longevidade/genética , Metformina/uso terapêutico , Animais , Humanos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Resultado do Tratamento
11.
Elife ; 102021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34467850

RESUMO

Mitochondrial activity determines aging rate and the onset of chronic diseases. The mitochondrial permeability transition pore (mPTP) is a pathological pore in the inner mitochondrial membrane thought to be composed of the F-ATP synthase (complex V). OSCP, a subunit of F-ATP synthase, helps protect against mPTP formation. How the destabilization of OSCP may contribute to aging, however, is unclear. We have found that loss OSCP in the nematode Caenorhabditis elegans initiates the mPTP and shortens lifespan specifically during adulthood, in part via initiation of the mitochondrial unfolded protein response (UPRmt). Pharmacological or genetic inhibition of the mPTP inhibits the UPRmt and restores normal lifespan. Loss of the putative pore-forming component of F-ATP synthase extends adult lifespan, suggesting that the mPTP normally promotes aging. Our findings reveal how an mPTP/UPRmt nexus may contribute to aging and age-related diseases and how inhibition of the UPRmt may be protective under certain conditions.


Assuntos
Envelhecimento , Caenorhabditis elegans/fisiologia , Membranas Mitocondriais/fisiologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Resposta a Proteínas não Dobradas , Animais , Mitocôndrias/fisiologia
12.
Geroscience ; 41(6): 945-960, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31820364

RESUMO

The goal of the Caenorhabditis Intervention Testing Program is to identify robust and reproducible pro-longevity interventions that are efficacious across genetically diverse cohorts in the Caenorhabditis genus. The project design features multiple experimental replicates collected by three different laboratories. Our initial effort employed fully manual survival assays. With an interest in increasing throughput, we explored automation with flatbed scanner-based Automated Lifespan Machines (ALMs). We used ALMs to measure survivorship of 22 Caenorhabditis strains spanning three species. Additionally, we tested five chemicals that we previously found extended lifespan in manual assays. Overall, we found similar sources of variation among trials for the ALM and our previous manual assays, verifying reproducibility of outcome. Survival assessment was generally consistent between the manual and the ALM assays, although we did observe radically contrasting results for certain compound interventions. We found that particular lifespan outcome differences could be attributed to protocol elements such as enhanced light exposure of specific compounds in the ALM, underscoring that differences in technical details can influence outcomes and therefore interpretation. Overall, we demonstrate that the ALMs effectively reproduce a large, conventionally scored dataset from a diverse test set, independently validating ALMs as a robust and reproducible approach toward aging-intervention screening.


Assuntos
Bioensaio/métodos , Caenorhabditis elegans/crescimento & desenvolvimento , Ácidos Cetoglutáricos/farmacologia , Longevidade/efeitos dos fármacos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/efeitos da radiação , Lasers , Longevidade/efeitos da radiação , Estimulação Luminosa
13.
Nat Commun ; 8: 14256, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28220799

RESUMO

Limiting the debilitating consequences of ageing is a major medical challenge of our time. Robust pharmacological interventions that promote healthy ageing across diverse genetic backgrounds may engage conserved longevity pathways. Here we report results from the Caenorhabditis Intervention Testing Program in assessing longevity variation across 22 Caenorhabditis strains spanning 3 species, using multiple replicates collected across three independent laboratories. Reproducibility between test sites is high, whereas individual trial reproducibility is relatively low. Of ten pro-longevity chemicals tested, six significantly extend lifespan in at least one strain. Three reported dietary restriction mimetics are mainly effective across C. elegans strains, indicating species and strain-specific responses. In contrast, the amyloid dye ThioflavinT is both potent and robust across the strains. Our results highlight promising pharmacological leads and demonstrate the importance of assessing lifespans of discrete cohorts across repeat studies to capture biological variation in the search for reproducible ageing interventions.


Assuntos
Caenorhabditis/efeitos dos fármacos , Patrimônio Genético , Longevidade/efeitos dos fármacos , Compostos Orgânicos/farmacologia , Animais , Benzotiazóis , Caenorhabditis/classificação , Caenorhabditis/genética , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Relação Dose-Resposta a Droga , Fertilidade/efeitos dos fármacos , Fertilidade/genética , Longevidade/genética , Reprodutibilidade dos Testes , Especificidade da Espécie , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...