Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604750

RESUMO

Major progress in developing Saccharomyces cerevisiae strains that utilize the pentose sugar xylose has been achieved. However, the high inhibitor content of lignocellulose hydrolysates still hinders efficient xylose fermentation, which remains a major obstacle for commercially viable second-generation bioethanol production. Further improvement of xylose utilization in inhibitor-rich lignocellulose hydrolysates remains highly challenging. In this work, we have developed a robust industrial S. cerevisiae strain able to efficiently ferment xylose in concentrated undetoxified lignocellulose hydrolysates. This was accomplished with novel multistep evolutionary engineering. First, a tetraploid strain was generated and evolved in xylose-enriched pretreated spruce biomass. The best evolved strain was sporulated to obtain a genetically diverse diploid population. The diploid strains were then screened in industrially relevant conditions. The best performing strain, MDS130, showed superior fermentation performance in three different lignocellulose hydrolysates. In concentrated corncob hydrolysate, with initial cell density of 1 g DW/l, at 35°C, MDS130 completely coconsumed glucose and xylose, producing ± 7% v/v ethanol with a yield of 91% of the maximum theoretical value and an overall productivity of 1.22 g/l/h. MDS130 has been developed from previous industrial yeast strains without applying external mutagenesis, minimizing the risk of negative side-effects on other commercially important properties and maximizing its potential for industrial application.


Assuntos
Etanol , Fermentação , Lignina , Engenharia Metabólica , Saccharomyces cerevisiae , Xilose , Lignina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Etanol/metabolismo , Microbiologia Industrial
2.
Appl Environ Microbiol ; 88(18): e0081422, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36073947

RESUMO

The introduction in modern breweries of tall cylindroconical fermentors, replacing the traditional open fermentation vats, unexpectedly revealed strong inhibition of flavor production by the high CO2 pressure in the fermentors. We have screened our collection of Saccharomyces cerevisiae strains for strains displaying elevated tolerance to inhibition of flavor production by +0.65 bar CO2, using a laboratory scale CO2 pressurized fermentation system. We focused on the production of isoamyl acetate, a highly desirable flavor compound conferring fruity banana flavor in beer and other alcoholic beverages, from its precursor isoamyl alcohol (IAAc/Alc ratio). We selected the most tolerant Saccharomyces cerevisiae strain, saké yeast Kyokai no. 1, isolated a stable haploid segregant seg63 with the same high IAAc/Alc ratio under CO2 pressure, crossed seg63 with the unrelated inferior strain ER7A and phenotyped 185 haploid segregants, of which 28 displaying a high IAAc/Alc ratio were pooled. Mapping of Quantitative Trait Loci (QTLs) by whole-genome sequence analysis based on SNP variant frequency revealed two QTLs. In the major QTL, reciprocal hemizygosity analysis identified MDS3 as the causative mutant gene, a putative member of the TOR signaling pathway. The MDS3Seg.63 allele was dominant and contained a single causative point mutation, T2171C, resulting in the F274S substitution. Introduction of MDS3Seg.63 in an industrial tetraploid lager yeast with CRISPR/Cas9 enhanced isoamyl acetate production by 145% under CO2 pressure. This work shows the strong potential of polygenic analysis and targeted genetic modification for creation of cisgenic industrial brewer's yeast strains with specifically improved traits. IMPORTANCE The upscaling of fermentation to very tall cylindroconical tanks is known to negatively impact beer flavor. Most notably, the increased CO2 pressure in such tanks compromises production by the yeast of the desirable fruity "banana" flavor (isoamyl acetate). The cause of the CO2 inhibition of yeast flavor production has always remained enigmatic. Our work has brought the first insight into its molecular-genetic basis and provides a specific gene tool for yeast strain improvement. We first identified a yeast strain with superior tolerance to CO2 inhibition of flavor production, and applied polygenic analysis to identify the responsible gene. We narrowed down the causative element to a single nucleotide difference, MDS3T2171C, and showed that it can be engineered into brewing yeast to obtain strains with superior flavor production in high CO2 pressure conditions, apparently without affecting other traits relevant for beer brewing. Alternatively, such a strain could be obtained through marker-assisted breeding.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Bebidas Alcoólicas , Dióxido de Carbono/metabolismo , Fermentação , Nucleotídeos/metabolismo , Pentanóis , Melhoramento Vegetal , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Microb Cell Fact ; 21(1): 199, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175998

RESUMO

As part of the transition from a fossil resources-based economy to a bio-based economy, the production of platform chemicals by microbial cell factories has gained strong interest. 2,3-butanediol (2,3-BDO) has various industrial applications, but its production by microbial fermentation poses multiple challenges. We have engineered the bacterial 2,3-BDO synthesis pathway, composed of AlsS, AlsD and BdhA, in a pdc-negative version of an industrial Saccharomyces cerevisiae yeast strain. The high concentration of glycerol caused by the excess NADH produced in the pathway from glucose to 2,3-BDO was eliminated by overexpression of NoxE and also in a novel way by combined overexpression of NDE1, encoding mitochondrial external NADH dehydrogenase, and AOX1, encoding a heterologous alternative oxidase expressed inside the mitochondria. This was combined with strong downregulation of GPD1 and deletion of GPD2, to minimize glycerol production while maintaining osmotolerance. The HGS50 strain produced a 2,3-BDO titer of 121.04 g/L from 250 g/L glucose, the highest ever reported in batch fermentation, with a productivity of 1.57 g/L.h (0.08 g/L.h per gCDW) and a yield of 0.48 g/g glucose or with 96% the closest to the maximum theoretical yield ever reported. Expression of Lactococcus lactis NoxE, encoding a water-forming NADH oxidase, combined with similar genetic modifications, as well as expression of Candida albicans STL1, also minimized glycerol production while maintaining high osmotolerance. The HGS37 strain produced 130.64 g/L 2,3-BDO from 280 g/L glucose, with productivity of 1.58 g/L.h (0.11 g/L.h per gCDW). Both strains reach combined performance criteria adequate for industrial implementation.


Assuntos
Glicerol , Saccharomyces cerevisiae , Butileno Glicóis/metabolismo , Fermentação , Glucose/metabolismo , Glicerol/metabolismo , Engenharia Metabólica , NAD/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
Mol Cell Biol ; 42(4): e0056021, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311587

RESUMO

Whole-genome (WG) transformation (WGT) with DNA from the same or another species has been used to obtain strains with superior traits. Very few examples have been reported in eukaryotes-most apparently involving integration of large fragments of foreign DNA into the host genome. We show that WGT of a haploid acetic acid-sensitive Saccharomyces cerevisiae strain with DNA from a tolerant strain, but not from nontolerant strains, generated many tolerant transformants, some of which were stable upon subculturing under nonselective conditions. The most tolerant stable transformant contained no foreign DNA but only seven nonsynonymous single nucleotide polymorphisms (SNPs), of which none was present in the donor genome. The SNF4 mutation c.[805G→T], generating Snf4E269*, was the main causative SNP. Allele exchange of SNF4E269* or snf4Δ in industrial strains with unrelated genetic backgrounds enhanced acetic acid tolerance during fermentation under industrially relevant conditions. Our work reveals a surprisingly small number of mutations introduced by WGT, which do not bear any sequence relatedness to the genomic DNA (gDNA) of the donor organism, including the causative mutation. Spontaneous mutagenesis under protection of a transient donor gDNA fragment, maintained as extrachromosomal circular DNA (eccDNA), might provide an explanation. Support for this mechanism was obtained by transformation with genomic DNA of a yeast strain containing NatMX and selection on medium with nourseothricin. Seven transformants were obtained that gradually lost their nourseothricin resistance upon subculturing in nonselective medium. Our work shows that WGT is an efficient strategy for rapidly generating and identifying superior alleles capable of improving selectable traits of interest in industrial yeast strains.


Assuntos
Proteínas de Saccharomyces cerevisiae , Estreptotricinas , Proteínas Quinases Ativadas por AMP/genética , Ácido Acético , Alelos , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
5.
PLoS Genet ; 17(10): e1009826, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34624020

RESUMO

Development of cell factories for conversion of lignocellulosic biomass hydrolysates into biofuels or bio-based chemicals faces major challenges, including the presence of inhibitory chemicals derived from biomass hydrolysis or pretreatment. Extensive screening of 2526 Saccharomyces cerevisiae strains and 17 non-conventional yeast species identified a Candida glabrata strain as the most 5-hydroxymethylfurfural (HMF) tolerant. Whole-genome (WG) transformation of the second-generation industrial S. cerevisiae strain MD4 with genomic DNA from C. glabrata, but not from non-tolerant strains, allowed selection of stable transformants in the presence of HMF. Transformant GVM0 showed the highest HMF tolerance for growth on plates and in small-scale fermentations. Comparison of the WG sequence of MD4 and GVM1, a diploid segregant of GVM0 with similarly high HMF tolerance, surprisingly revealed only nine non-synonymous SNPs, of which none were present in the C. glabrata genome. Reciprocal hemizygosity analysis in diploid strain GVM1 revealed AST2N406I as the only causative mutation. This novel SNP improved tolerance to HMF, furfural and other inhibitors, when introduced in different yeast genetic backgrounds and both in synthetic media and lignocellulose hydrolysates. It stimulated disappearance of HMF and furfural from the medium and enhanced in vitro furfural NADH-dependent reducing activity. The corresponding mutation present in AST1 (i.e. AST1D405I) the paralog gene of AST2, also improved inhibitor tolerance but only in combination with AST2N406I and in presence of high inhibitor concentrations. Our work provides a powerful genetic tool to improve yeast inhibitor tolerance in lignocellulosic biomass hydrolysates and other inhibitor-rich industrial media, and it has revealed for the first time a clear function for Ast2 and Ast1 in inhibitor tolerance.


Assuntos
Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Tolerância a Medicamentos/genética , Furaldeído/análogos & derivados , Mutação/genética , Saccharomyces cerevisiae/genética , Transformação Genética/genética , Biomassa , Fermentação/genética , Furaldeído/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
6.
Microb Cell Fact ; 20(1): 114, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098954

RESUMO

BACKGROUND: The current shift from a fossil-resource based economy to a more sustainable, bio-based economy requires development of alternative production routes based on utilization of biomass for the many chemicals that are currently produced from petroleum. Muconic acid is an attractive platform chemical for the bio-based economy because it can be converted in chemicals with wide industrial applicability, such as adipic and terephthalic acid, and because its two double bonds offer great versatility for chemical modification. RESULTS: We have constructed a yeast cell factory converting glucose and xylose into muconic acid without formation of ethanol. We consecutively eliminated feedback inhibition in the shikimate pathway, inserted the heterologous pathway for muconic acid biosynthesis from 3-dehydroshikimate (DHS) by co-expression of DHS dehydratase from P. anserina, protocatechuic acid (PCA) decarboxylase (PCAD) from K. pneumoniae and oxygen-consuming catechol 1,2-dioxygenase (CDO) from C. albicans, eliminated ethanol production by deletion of the three PDC genes and minimized PCA production by enhancing PCAD overexpression and production of its co-factor. The yeast pitching rate was increased to lower high biomass formation caused by the compulsory aerobic conditions. Maximal titers of 4 g/L, 4.5 g/L and 3.8 g/L muconic acid were reached with glucose, xylose, and a mixture, respectively. The use of an elevated initial sugar level, resulting in muconic acid titers above 2.5 g/L, caused stuck fermentations with incomplete utilization of the sugar. Application of polypropylene glycol 4000 (PPG) as solvent for in situ product removal during the fermentation shows that this is not due to toxicity by the muconic acid produced. CONCLUSIONS: This work has developed an industrial yeast strain able to produce muconic acid from glucose and also with great efficiency from xylose, without any ethanol production, minimal production of PCA and reaching the highest titers in batch fermentation reported up to now. Utilization of higher sugar levels remained conspicuously incomplete. Since this was not due to product inhibition by muconic acid or to loss of viability, an unknown, possibly metabolic bottleneck apparently arises during muconic acid fermentation with high sugar levels and blocks further sugar utilization.


Assuntos
Carboxiliases/metabolismo , Catecol 1,2-Dioxigenase/metabolismo , Hidroliases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Sórbico/análogos & derivados , Xilose/metabolismo , Carboxiliases/genética , Catecol 1,2-Dioxigenase/genética , Clonagem Molecular , DNA Fúngico , Fermentação , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Hidroliases/genética , Hidroxibenzoatos/metabolismo , Microbiologia Industrial , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Piruvato Descarboxilase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ácido Chiquímico/análogos & derivados , Ácido Chiquímico/metabolismo , Ácido Sórbico/isolamento & purificação , Ácido Sórbico/metabolismo
7.
Microb Cell ; 8(6): 111-130, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-34055965

RESUMO

One of the major bottlenecks in lactic acid production using microbial fermentation is the detrimental influence lactic acid accumulation poses on the lactic acid producing cells. The accumulation of lactic acid results in many negative effects on the cell such as intracellular acidification, anion accumulation, membrane perturbation, disturbed amino acid trafficking, increased turgor pressure, ATP depletion, ROS accumulation, metabolic dysregulation and metal chelation. In this review, the manner in which Saccharomyces cerevisiae deals with these issues will be discussed extensively not only for lactic acid as a singular stress factor but also in combination with other stresses. In addition, different methods to improve lactic acid tolerance in S. cerevisiae using targeted and non-targeted engineering methods will be discussed.

8.
Biotechnol Biofuels ; 14(1): 92, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836811

RESUMO

BACKGROUND: Presence of inhibitory chemicals in lignocellulose hydrolysates is a major hurdle for production of second-generation bioethanol. Especially cheaper pre-treatment methods that ensure an economical viable production process generate high levels of these inhibitory chemicals. The effect of several of these inhibitors has been extensively studied with non-xylose-fermenting laboratory strains, in synthetic media, and usually as single inhibitors, or with inhibitor concentrations much higher than those found in lignocellulose hydrolysates. However, the relevance of individual inhibitors in inhibitor-rich lignocellulose hydrolysates has remained unclear. RESULTS: The relative importance for inhibition of ethanol fermentation by two industrial second-generation yeast strains in five lignocellulose hydrolysates, from bagasse, corn cobs and spruce, has now been investigated by spiking higher concentrations of each compound in a concentration range relevant for industrial hydrolysates. The strongest inhibition was observed with industrially relevant concentrations of furfural causing partial inhibition of both D-glucose and D-xylose consumption. Addition of 3 or 6 g/L furfural strongly reduced the ethanol titer obtained with strain MD4 in all hydrolysates evaluated, in a range of 34 to 51% and of 77 to 86%, respectively. This was followed by 5-hydroxymethylfurfural, acetic acid and formic acid, for which in general, industrially relevant concentrations caused partial inhibition of D-xylose fermentation. On the other hand, spiking with levulinic acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid or vanillin caused little inhibition compared to unspiked hydrolysate. The further evolved MD4 strain generally showed superior performance compared to the previously developed strain GSE16-T18. CONCLUSION: The results highlight the importance of individual inhibitor evaluation in a medium containing a genuine mix of inhibitors as well as the ethanol that is produced by the fermentation. They also highlight the potential of increasing yeast inhibitor tolerance for improving industrial process economics.

9.
mBio ; 12(2)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758086

RESUMO

tRNAs are encoded by a large gene family, usually with several isogenic tRNAs interacting with the same codon. Mutations in the anticodon region of other tRNAs can overcome specific tRNA deficiencies. Phylogenetic analysis suggests that such mutations have occurred in evolution, but the driving force is unclear. We show that in yeast suppressor mutations in other tRNAs are able to overcome deficiency of the essential TRT2-encoded tRNAThrCGU at high temperature (40°C). Surprisingly, these tRNA suppressor mutations were obtained after whole-genome transformation with DNA from thermotolerant Kluyveromyces marxianus or Ogataea polymorpha strains but from which the mutations did apparently not originate. We suggest that transient presence of donor DNA in the host facilitates proliferation at high temperature and thus increases the chances for occurrence of spontaneous mutations suppressing defective growth at high temperature. Whole-genome sequence analysis of three transformants revealed only four to five nonsynonymous mutations of which one causing TRT2 anticodon stem stabilization and two anticodon mutations in non-threonyl-tRNAs, tRNALysCUU and tRNAeMetCAU, were causative. Both anticodon mutations suppressed lethality of TRT2 deletion and apparently caused the respective tRNAs to become novel substrates for threonyl-tRNA synthetase. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) data could not detect any significant mistranslation, and reverse transcription-quantitative PCR results contradicted induction of the unfolded protein response. We suggest that stress conditions have been a driving force in evolution for the selection of anticodon-switching mutations in tRNAs as revealed by phylogenetic analysis.IMPORTANCE In this work, we have identified for the first time the causative elements in a eukaryotic organism introduced by applying whole-genome transformation and responsible for the selectable trait of interest, i.e., high temperature tolerance. Surprisingly, the whole-genome transformants contained just a few single nucleotide polymorphisms (SNPs), which were unrelated to the sequence of the donor DNA. In each of three independent transformants, we have identified a SNP in a tRNA, either stabilizing the essential tRNAThrCGU at high temperature or switching the anticodon of tRNALysCUU or tRNAeMetCAU into CGU, which is apparently enough for in vivo recognition by threonyl-tRNA synthetase. LC-MS/MS analysis indeed indicated absence of significant mistranslation. Phylogenetic analysis showed that similar mutations have occurred throughout evolution and we suggest that stress conditions may have been a driving force for their selection. The low number of SNPs introduced by whole-genome transformation may favor its application for improvement of industrial yeast strains.


Assuntos
Anticódon/antagonistas & inibidores , Genoma Fúngico , Kluyveromyces/genética , Mutação , RNA de Transferência/genética , Estresse Fisiológico/genética , Supressão Genética , Anticódon/genética , Cromatografia Líquida , Kluyveromyces/classificação , Filogenia , Polimorfismo de Nucleotídeo Único , Espectrometria de Massas em Tandem , Sequenciamento Completo do Genoma
10.
Front Microbiol ; 12: 768562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126325

RESUMO

Natural yeast with superior fermentative traits can serve as a platform for the development of recombinant strains that can be used to improve the sustainability of bioethanol production from starch. This process will benefit from a consolidated bioprocessing (CBP) approach where an engineered strain producing amylases directly converts starch into ethanol. The yeast Saccharomyces cerevisiae L20, previously selected as outperforming the benchmark yeast Ethanol Red, was here subjected to a comparative genomic investigation using a dataset of industrial S. cerevisiae strains. Along with Ethanol Red, strain L20 was then engineered for the expression of α-amylase amyA and glucoamylase glaA genes from Aspergillus tubingensis by employing two different approaches (delta integration and CRISPR/Cas9). A correlation between the number of integrated copies and the hydrolytic abilities of the recombinants was investigated. L20 demonstrated important traits for the construction of a proficient CBP yeast. Despite showing a close relatedness to commercial wine yeast and the benchmark Ethanol Red, a unique profile of gene copy number variations (CNVs) was found in L20, mainly encoding membrane transporters and secretion pathway proteins but also the fermentative metabolism. Moreover, the genome annotation disclosed seven open reading frames (ORFs) in L20 that are absent in the reference S288C genome. Genome engineering was successfully implemented for amylase production. However, with equal amylase gene copies, L20 proved its proficiency as a good enzyme secretor by exhibiting a markedly higher amylolytic activity than Ethanol Red, in compliance to the findings of the genomic exploration. The recombinant L20 dT8 exhibited the highest amylolytic activity and produced more than 4 g/L of ethanol from 2% starch in a CBP setting without the addition of supplementary enzymes. Based on the performance of this strain, an amylase/glucoamylase ratio of 1:2.5 was suggested as baseline for further improvement of the CBP ability. Overall, L20 showed important traits for the future construction of a proficient CBP yeast. As such, this work shows that natural S. cerevisiae strains can be used for the expression of foreign secreted enzymes, paving the way to strain improvement for the starch-to-bioethanol route.

11.
Biotechnol Biofuels ; 13: 126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695222

RESUMO

BACKGROUND: High acetic acid tolerance is of major importance in industrial yeast strains used for second-generation bioethanol production, because of the high acetic acid content of lignocellulose hydrolysates. It is also important in first-generation starch hydrolysates and in sourdoughs containing significant acetic acid levels. We have previously identified snf4 E269* as a causative allele in strain MS164 obtained after whole-genome (WG) transformation and selection for improved acetic acid tolerance. RESULTS: We have now performed polygenic analysis with the same WG transformant MS164 to identify novel causative alleles interacting with snf4 E269* to further enhance acetic acid tolerance, from a range of 0.8-1.2% acetic acid at pH 4.7, to previously unmatched levels for Saccharomyces cerevisiae. For that purpose, we crossed the WG transformant with strain 16D, a previously identified strain displaying very high acetic acid tolerance. Quantitative trait locus (QTL) mapping with pooled-segregant whole-genome sequence analysis identified four major and two minor QTLs. In addition to confirmation of snf4 E269* in QTL1, we identified six other genes linked to very high acetic acid tolerance, TRT2, MET4, IRA2 and RTG1 and a combination of MSH2 and HAL9, some of which have never been connected previously to acetic acid tolerance. Several of these genes appear to be wild-type alleles that complement defective alleles present in the other parent strain. CONCLUSIONS: The presence of several novel causative genes highlights the distinct genetic basis and the strong genetic background dependency of very high acetic acid tolerance. Our results suggest that elimination of inferior mutant alleles might be equally important for reaching very high acetic acid tolerance as introduction of rare superior alleles. The superior alleles of MET4 and RTG1 might be useful for further improvement of acetic acid tolerance in specific industrial yeast strains.

12.
Biotechnol Biofuels ; 13: 85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426034

RESUMO

BACKGROUND: The search for sustainable energy sources has become a worldwide issue, making the development of efficient biofuel production processes a priority. Immobilization of second-generation (2G) xylose-fermenting Saccharomyces cerevisiae strains is a promising approach to achieve economic viability of 2G bioethanol production from undetoxified hydrolysates through operation at high cell load and mitigation of inhibitor toxicity. In addition, the use of a fixed-bed reactor can contribute to establish an efficient process because of its distinct advantages, such as high conversion rate per weight of biocatalyst and reuse of biocatalyst. RESULTS: This work assessed the influence of alginate entrapment on the tolerance of recombinant S. cerevisiae to acetic acid. Encapsulated GSE16-T18SI.1 (T18) yeast showed an outstanding performance in repeated batch fermentations with cell recycling in YPX medium supplemented with 8 g/L acetic acid (pH 5.2), achieving 10 cycles without significant loss of productivity. In the fixed-bed bioreactor, a high xylose fermentation rate with ethanol yield and productivity values of 0.38 gethanol/gsugars and 5.7 g/L/h, respectively were achieved in fermentations using undetoxified sugarcane bagasse hemicellulose hydrolysate, with and without medium recirculation. CONCLUSIONS: The performance of recombinant strains developed for 2G ethanol production can be boosted strongly by cell immobilization in alginate gels. Yeast encapsulation allows conducting fermentations in repeated batch mode in fixed-bed bioreactors with high xylose assimilation rate and high ethanol productivity using undetoxified hemicellulose hydrolysate.

13.
Metab Eng ; 59: 131-141, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32114024

RESUMO

A major hurdle in the production of bioethanol with second-generation feedstocks is the high cost of the enzymes for saccharification of the lignocellulosic biomass into fermentable sugars. Simultaneous saccharification and fermentation with Saccharomyces cerevisiae yeast that secretes a range of lignocellulolytic enzymes might address this problem, ideally leading to consolidated bioprocessing. However, it has been unclear how many enzymes can be secreted simultaneously and what the consequences would be on the C6 and C5 sugar fermentation performance and robustness of the second-generation yeast strain. We have successfully expressed seven secreted lignocellulolytic enzymes, namely endoglucanase, ß-glucosidase, cellobiohydrolase I and II, xylanase, ß-xylosidase and acetylxylan esterase, in a single second-generation industrial S. cerevisiae strain, reaching 94.5 FPU/g CDW and enabling direct conversion of lignocellulosic substrates into ethanol without preceding enzyme treatment. Neither glucose nor the engineered xylose fermentation were significantly affected by the heterologous enzyme secretion. This strain can therefore serve as a promising industrial platform strain for development of yeast cell factories that can significantly reduce the enzyme cost for saccharification of lignocellulosic feedstocks.


Assuntos
Etanol/metabolismo , Microbiologia Industrial , Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , beta-Glucosidase/biossíntese , beta-Glucosidase/genética
14.
Genome Res ; 29(9): 1478-1494, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31467028

RESUMO

The yeast Saccharomyces boulardii has been used worldwide as a popular, commercial probiotic, but the basis of its probiotic action remains obscure. It is considered conspecific with budding yeast Saccharomyces cerevisiae, which is generally used in classical food applications. They have an almost identical genome sequence, making the genetic basis of probiotic potency in S. boulardii puzzling. We now show that S. boulardii produces at 37°C unusually high levels of acetic acid, which is strongly inhibitory to bacterial growth in agar-well diffusion assays and could be vital for its unique application as a probiotic among yeasts. Using pooled-segregant whole-genome sequence analysis with S. boulardii and S. cerevisiae parent strains, we succeeded in mapping the underlying QTLs and identified mutant alleles of SDH1 and WHI2 as the causative alleles. Both genes contain a SNP unique to S. boulardii (sdh1 F317Y and whi2 S287*) and are fully responsible for its high acetic acid production. S. boulardii strains show different levels of acetic acid production, depending on the copy number of the whi2 S287* allele. Our results offer the first molecular explanation as to why S. boulardii could exert probiotic action as opposed to S. cerevisiae They reveal for the first time the molecular-genetic basis of a probiotic action-related trait in S. boulardii and show that antibacterial potency of a probiotic microorganism can be due to strain-specific mutations within the same species. We suggest that acquisition of antibacterial activity through medium acidification offered a selective advantage to S. boulardii in its ecological niche and for its application as a probiotic.


Assuntos
Ácido Acético/metabolismo , Locos de Características Quantitativas , Saccharomyces boulardii/crescimento & desenvolvimento , Sequenciamento Completo do Genoma/métodos , Antibacterianos/metabolismo , Variações do Número de Cópias de DNA , Temperatura Alta , Polimorfismo de Nucleotídeo Único , Probióticos/metabolismo , Saccharomyces boulardii/genética , Saccharomyces boulardii/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Succinato Desidrogenase/genética
15.
FEMS Microbiol Rev ; 43(3): 193-222, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445501

RESUMO

Aroma compounds provide attractiveness and variety to alcoholic beverages. We discuss the molecular biology of a major subset of beer aroma volatiles, fruity and floral compounds, originating from raw materials (malt and hops), or formed by yeast during fermentation. We introduce aroma perception, describe the most aroma-active, fruity and floral compounds in fruits and their presence and origin in beer. They are classified into categories based on their functional groups and biosynthesis pathways: (1) higher alcohols and esters, (2) polyfunctional thiols, (3) lactones and furanones, and (4) terpenoids. Yeast and hops are the main sources of fruity and flowery aroma compounds in beer. For yeast, the focus is on higher alcohols and esters, and particularly the complex regulation of the alcohol acetyl transferase ATF1 gene. We discuss the release of polyfunctional thiols and monoterpenoids from cysteine- and glutathione-S-conjugated compounds and glucosides, respectively, the primary biological functions of the yeast enzymes involved, their mode of action and mechanisms of regulation that control aroma compound production. Furthermore, we discuss biochemistry and genetics of terpenoid production and formation of non-volatile precursors in Humulus lupulus (hops). Insight in these pathways provides a toolbox for creating innovative products with a diversity of pleasant aromas.


Assuntos
Bebidas Alcoólicas/análise , Cerveja/análise , Microbiologia de Alimentos , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Humulus/genética , Humulus/metabolismo , Proteínas/genética , Proteínas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
mBio ; 9(4)2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154260

RESUMO

Flavor production in yeast fermentation is of paramount importance for industrial production of alcoholic beverages. Although major enzymes of flavor compound biosynthesis have been identified, few specific mutations responsible for strain diversity in flavor production are known. The ATF1-encoded alcohol acetyl coenzyme A (acetyl-CoA) transferase (AATase) is responsible for the majority of acetate ester biosynthesis, but other components affecting strain diversity remain unknown. We have performed parallel polygenic analysis of low production of ethyl acetate, a compound with an undesirable solvent-like off-flavor, in strains with and without deletion of ATF1 We identified two unique causative mutations, eat1K179fs and snf8E148*, not present in any other sequenced yeast strain and responsible for most ethyl acetate produced in absence of ATF1EAT1 encodes a putative mitochondrial ethanol acetyl-CoA transferase (EATase) and its overexpression, but not that of EAT1K179fs , and strongly increases ethyl acetate without affecting other flavor acetate esters. Unexpectedly, a higher level of acetate esters (including ethyl acetate) was produced when eat1K179fs was present together with ATF1 in the same strain, suggesting that the Eat1 and Atf1 enzymes are intertwined. On the other hand, introduction of snf8E148* lowered ethyl acetate levels also in the presence of ATF1, and it affected other aroma compounds, growth, and fermentation as well. Engineering of snf8E148* in three industrial yeast strains (for production of wine, saké, and ale beer) and fermentation in an application-relevant medium showed a high but strain-dependent potential for flavor enhancement. Our work has identified EAT1 and SNF8 as new genetic elements determining ethyl acetate production diversity in yeast strains.IMPORTANCE Basic research with laboratory strains of the yeast Saccharomyces cerevisiae has identified the structural genes of most metabolic enzymes, as well as genes encoding major regulators of metabolism. On the other hand, more recent work on polygenic analysis of yeast biodiversity in natural and industrial yeast strains is revealing novel components of yeast metabolism. A major example is the metabolism of flavor compounds, a particularly important property of industrial yeast strains used for the production of alcoholic beverages. In this work, we have performed polygenic analysis of production of ethyl acetate, an important off-flavor compound in beer and other alcoholic beverages. To increase the chances of identifying novel components, we have used in parallel a wild-type strain and a strain with a deletion of ATF1 encoding the main enzyme of acetate ester biosynthesis. This revealed a new structural gene, EAT1, encoding a putative mitochondrial enzyme, which was recently identified as an ethanol acetyl-CoA transferase in another yeast species. We also identified a novel regulatory gene, SNF8, which has not previously been linked to flavor production. Our results show that polygenic analysis of metabolic traits in the absence of major effector genes can reveal novel structural and regulatory genes. The mutant alleles identified can be used to affect the flavor profile in industrial yeast strains for production of alcoholic beverages in more subtle ways than by deletion or overexpression of the already known major effector genes and without significantly altering other industrially important traits. The effect of the novel variants was dependent on the genetic background, with a highly desirable outcome in the flavor profile of an ale brewing yeast.


Assuntos
Acetatos/metabolismo , Acetiltransferases/metabolismo , Aciltransferases/metabolismo , Vias Biossintéticas/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Aciltransferases/genética , Bebidas Alcoólicas/microbiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Fermentação , Engenharia Metabólica , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
mBio ; 8(6)2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29114020

RESUMO

Flavor compound metabolism is one of the last areas in metabolism where multiple genes encoding biosynthetic enzymes are still unknown. A major challenge is the involvement of side activities of enzymes having their main function in other areas of metabolism. We have applied pooled-segregant whole-genome sequence analysis to identify novel Saccharomyces cerevisiae genes affecting production of phenylethyl acetate (2-PEAc). This is a desirable flavor compound of major importance in alcoholic beverages imparting rose- and honey-like aromas, with production of high 2-PEAc levels considered a superior trait. Four quantitative trait loci (QTLs) responsible for high 2-PEAc production were identified, with two loci each showing linkage to the genomes of the BTC.1D and ER18 parents. The first two loci were investigated further. The causative genes were identified by reciprocal allele swapping into both parents using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9. The superior allele of the first major causative gene, FAS2, was dominant and contained two unique single nucleotide polymorphisms (SNPs) responsible for high 2-PEAc production that were not present in other sequenced yeast strains. FAS2 encodes the alpha subunit of the fatty acid synthetase complex. Surprisingly, the second causative gene was a mutant allele of TOR1, a gene involved in nitrogen regulation. Exchange of both superior alleles in the ER18 parent strain increased 2-PEAc production 70%, nearly to the same level as in the best superior segregant. Our results show that polygenic analysis combined with CRISPR/Cas9-mediated allele exchange is a powerful tool for identification of genes encoding missing metabolic enzymes and for development of industrial yeast strains generating novel flavor profiles in alcoholic beverages.IMPORTANCE Multiple reactions in flavor metabolism appear to be catalyzed by side activities of other enzymes that have been difficult to identify. We have applied genetic mapping of quantitative trait loci in the yeast Saccharomyces cerevisiae to identify mutant alleles of genes determining the production of phenylethyl acetate, an important flavor compound imparting rose- and honey-like aromas to alcoholic beverages. We identified a unique, dominant allele of FAS2 that supports high production of phenylethyl acetate. FAS2 encodes a subunit of the fatty acid synthetase complex and apparently exerts an important side activity on one or more alternative substrates in flavor compound synthesis. The second mutant allele contained a nonsense mutation in TOR1, a gene involved in nitrogen regulation of growth. Together the two alleles strongly increased the level of phenylethyl acetate. Our work highlights the potential of genetic mapping of quantitative phenotypic traits to identify novel enzymes and regulatory components in yeast metabolism, including regular metabolic enzymes with unknown side activities responsible for biosynthesis of specific flavor compounds. The superior alleles identified can be used to develop industrial yeast strains generating novel flavor profiles in alcoholic beverages.


Assuntos
Acetatos/metabolismo , Alelos , Álcool Feniletílico/metabolismo , Locos de Características Quantitativas , Rosa/química , Saccharomyces cerevisiae/genética , Acetatos/química , Álcoois/química , Mapeamento Cromossômico , Ácido Graxo Sintases/genética , Aromatizantes/metabolismo , Mutação , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Fosfatidilinositol 3-Quinases/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Bioresour Technol ; 244(Pt 1): 234-242, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28779676

RESUMO

The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed.


Assuntos
Biocombustíveis , Cocos , Etanol , Fermentação , Hipergravidade , Saccharomyces cerevisiae
19.
Biotechnol J ; 12(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28834329

RESUMO

The yeast Saccharomyces cerevisiae has a long association with alcoholic fermentation industries and has received renewed interest as a biocatalyst for second-generation bioethanol production. Rational engineering strategies are used to create yeast strains for consolidated bioprocessing of lignocellulosic biomass. Although significant progress is made in this regard with the expression of different cellulolytic activities in yeast, cellobiohydrolase (CBH) titers remain well below ideal levels. Through classical breeding, S. cerevisiae strains with up to twofold increased CBH secretion titers is obtained in strains expressing a single gene copy. An increase of up to 3.5-fold in secreted cellobiohydrolase activity is subsequently shown for strains expressing the heterologous gene on a high copy episomal vector. To our knowledge, this is the first report of classical breeding being used to enhance heterologous protein secretion and also the most significant enhancement of CBH secretion in yeast yet reported. This enhanced secretion phenotype is specific for cellobiohydrolase I secretion, indicating that reporter protein properties might be a major determining factor for efficient protein secretion in yeast. By exploring the latent potential of different S. cerevisiae strains, the authors show that the allele pool of various strains is a valuable engineering resource to enhance secretion in yeast.


Assuntos
Cruzamento , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Biotecnologia/métodos , Ensaios Enzimáticos , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Engenharia Genética/métodos , Instabilidade Genômica , Fenótipo , Saccharomyces cerevisiae/crescimento & desenvolvimento
20.
FEMS Yeast Res ; 17(4)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28586408

RESUMO

The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way.


Assuntos
Adaptação Fisiológica/genética , Edição de Genes/métodos , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/metabolismo , Sistemas CRISPR-Cas , Etanol/metabolismo , Etanol/toxicidade , Fermentação , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Pressão Osmótica , Fenóis/metabolismo , Fenóis/toxicidade , Saccharomyces cerevisiae/genética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...