Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38948797

RESUMO

Glycosylation-deficient Chinese hamster ovary (CHO) cell lines have been instrumental in the discovery of N-glycosylation machinery. Yet, the molecular causes of the glycosylation defects in the Lec5 and Lec9 mutants have been elusive, even though for both cell lines a defect in dolichol formation from polyprenol was previously established. We recently found that dolichol synthesis from polyprenol occurs in three steps consisting of the conversion of polyprenol to polyprenal by DHRSX, the reduction of polyprenal to dolichal by SRD5A3 and the reduction of dolichal to dolichol, again by DHRSX. This led us to investigate defective dolichol synthesis in Lec5 and Lec9 cells. Both cell lines showed increased levels of polyprenol and its derivatives, concomitant with decreased levels of dolichol and derivatives, but no change in polyprenal levels, suggesting DHRSX deficiency. Accordingly, N-glycan synthesis and changes in polyisoprenoid levels were corrected by complementation with human DHRSX but not with SRD5A3. Furthermore, the typical polyprenol dehydrogenase and dolichal reductase activities of DHRSX were absent in membrane preparations derived from Lec5 and Lec9 cells, while the reduction of polyprenal to dolichal, catalyzed by SRD5A3, was unaffected. Long-read whole genome sequencing of Lec5 and Lec9 cells did not reveal mutations in the ORF of SRD5A3, but the genomic region containing DHRSX was absent. Lastly, we established the sequence of Chinese hamster DHRSX and validated that this protein has similar kinetic properties to the human enzyme. Our work therefore identifies the basis of the dolichol synthesis defect in CHO Lec5 and Lec9 cells.

3.
Adv Clin Chem ; 120: 1-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38762238

RESUMO

Congenital disorders of glycosylation (CDG) are one of the fastest growing groups of inborn errors of metabolism, comprising over 160 described diseases to this day. CDG are characterized by a dysfunctional glycosylation process, with molecular defects localized in the cytosol, the endoplasmic reticulum, or the Golgi apparatus. Depending on the CDG, N-glycosylation, O-glycosylation and/or glycosaminoglycan synthesis can be affected. Various proteins, lipids, and glycosylphosphatidylinositol anchors bear glycan chains, with potential impacts on their folding, targeting, secretion, stability, and thus, functionality. Therefore, glycosylation defects can have diverse and serious clinical consequences. CDG patients often present with a non-specific, multisystemic syndrome including neurological involvement, growth delay, hepatopathy and coagulopathy. As CDG are rare diseases, and typically lack distinctive clinical signs, biochemical and genetic testing bear particularly important and complementary diagnostic roles. Here, after a brief introduction on glycosylation and CDG, we review historical and recent findings on CDG biomarkers and associated analytical techniques, with a particular emphasis on those with relevant use in the specialized clinical chemistry laboratory. We provide the reader with insights and methods which may help them properly assist the clinician in navigating the maze of glycosylation disorders.


Assuntos
Biomarcadores , Defeitos Congênitos da Glicosilação , Humanos , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/genética , Glicosilação , Biomarcadores/metabolismo
4.
Cell ; 187(14): 3585-3601.e22, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821050

RESUMO

Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.


Assuntos
Dolicóis , Dolicóis/metabolismo , Dolicóis/biossíntese , Humanos , Glicosilação , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/genética , Masculino , Mutação de Sentido Incorreto , Feminino
5.
Transl Res ; 266: 57-67, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38013006

RESUMO

TMEM165-CDG has first been reported in 2012 and manganese supplementation was shown highly efficient in rescuing glycosylation in isogenic KO cells. The unreported homozygous missense c.928G>C; p.Ala310Pro variant leading to a functional but unstable protein was identified. This patient was diagnosed at 2 months and displays a predominant bone phenotype and combined defects in N-, O- and GAG glycosylation. We administered for the first time a combined D-Gal and Mn2+ therapy to the patient. This fully suppressed the N-; O- and GAG hypoglycosylation. There was also striking improvement in biochemical parameters and in gastrointestinal symptoms. This study offers exciting therapeutic perspectives for TMEM165-CDG.


Assuntos
Proteínas de Transporte de Cátions , Defeitos Congênitos da Glicosilação , Humanos , Manganês/metabolismo , Galactose , Antiporters/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo
6.
Comput Struct Biotechnol J ; 21: 3424-3436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416081

RESUMO

TMEM165 is a Golgi protein playing a crucial role in Mn2+ transport, and whose mutations in patients are known to cause Congenital Disorders of Glycosylation. Some of those mutations affect the highly-conserved consensus motifs E-φ-G-D-[KR]-[TS] characterizing the CaCA2/UPF0016 family, presumably important for the transport of Mn2+ which is essential for the function of many Golgi glycosylation enzymes. Others, like the G>R304 mutation, are far away from these motifs in the sequence. Until recently, the classical membrane protein topology prediction methods were unable to provide a clear picture of the organization of TMEM165 inside the cell membrane, or to explain in a convincing manner the impact of patient and experimentally-generated mutations on the transporter function of TMEM165. In this study, AlphaFold 2 was used to build a TMEM165 model that was then refined by molecular dynamics simulation with membrane lipids and water. This model provides a realistic picture of the 3D protein scaffold formed from a two-fold repeat of three transmembrane helices/domains where the consensus motifs face each other to form a putative acidic cation-binding site at the cytosolic side of the protein. It sheds new light on the impact of mutations on the transporter function of TMEM165, found in patients and studied experimentally in vitro, formerly and within this study. More particularly and very interestingly, this model explains the impact of the G>R304 mutation on TMEM165's function. These findings provide great confidence in the predicted TMEM165 model whose structural features are discussed in the study and compared to other structural and functional TMEM165 homologs from the CaCA2/UPF0016 family and the LysE superfamily.

7.
Biochim Biophys Acta Gen Subj ; 1867(9): 130412, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348823

RESUMO

The remarkable structural diversity of glycans that is exposed at the cell surface and generated along the secretory pathway is tightly regulated by several factors. The recent identification of human glycosylation diseases related to metal transporter defects opened a completely new field of investigation, referred to herein as "metalloglycobiology", on how metal changes can affect the glycosylation and hence the glycan structures that are produced. Although this field is in its infancy, this review aims to go through the different glycosylation steps/pathways that are metal dependent and that could be impacted by metal homeostasis dysregulations.


Assuntos
Glicômica , Glicosilação , Metais , Polissacarídeos , Humanos , Proteínas de Transporte de Cátions/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Glicômica/tendências , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Homeostase , Magnésio/química , Magnésio/metabolismo , Metais/química , Metais/metabolismo , Oxirredução , Polissacarídeos/química , Polissacarídeos/metabolismo , Zinco/química , Zinco/metabolismo
8.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166717, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37062452

RESUMO

Golgi cation homeostasis is known to be crucial for many cellular processes including vesicular fusion events, protein secretion, as well as for the activity of Golgi glycosyltransferases and glycosidases. TMEM165 was identified in 2012 as the first cation transporter related to human glycosylation diseases, namely the Congenital Disorders of Glycosylation (CDG). Interestingly, divalent manganese (Mn) supplementation has been shown to suppress the observed glycosylation defects in TMEM165-deficient cell lines, thus suggesting that TMEM165 is involved in cellular Mn homeostasis. This paper demonstrates that the origin of the Golgi glycosylation defects arises from impaired Golgi Mn homeostasis in TMEM165-depleted cells. We show that Mn supplementation fully rescues the Mn content in the secretory pathway/organelles of TMEM165-depleted cells and hence the glycosylation process. Strong cytosolic and organellar Mn accumulations can also be observed in TMEM165- and SPCA1-depleted cells upon incubation with increasing Mn concentrations, thus demonstrating the crucial involvement of these two proteins in cellular Mn homeostasis. Interestingly, our results show that the cellular Mn homeostasis maintenance in control cells is correlated with the presence of TMEM165 and that the Mn-detoxifying capacities of cells, through the activity of SPCA1, rely on the Mn-induced degradation mechanism of TMEM165. Finally, this paper highlights that TMEM165 is essential in secretory pathway/organelles Mn homeostasis maintenance to ensure both Golgi glycosylation enzyme activities and cytosolic Mn detoxification.


Assuntos
Proteínas de Transporte de Cátions , Manganês , Humanos , Manganês/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Antiporters/metabolismo , Complexo de Golgi/metabolismo , Homeostase
9.
Cancers (Basel) ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36980711

RESUMO

The TRPV6 calcium channel is known to be up-regulated in various tumors. The efforts to target the TRPV6 channel in vivo are still ongoing to propose an effective therapy against cancer. Here, we report the generation of two antibodies raised against extracellular epitopes corresponding to the extracellular loop between S1 and S2 (rb79) and the pore region (rb82). These antibodies generated a complex biphasic response with the transient activation of the TRPV6 channel. Store-operated calcium entry was consequently potentiated in the prostate cancer cell line LNCaP upon the treatment. Both rb79 and rb82 antibodies significantly decreased cell survival rate in a dose-dependent manner as compared to the control antibodies of the same isotype. This decrease was due to the enhanced cell death via apoptosis revealed using a sub-G1 peak in a cell cycle assay, TUNEL assay, and a Hoechst staining, having no effects in the PC3Mtrpv6-/- cell line. Moreover, all TUNEL-positive cells had TRPV6 membrane staining as compared to the control antibody treatment where TRPV6-positive cells were all TUNEL negative. These data clearly demonstrate that TRPV6 channel targeting using rb79 and rb82 antibodies is fatal and may be successfully used in the anticancer therapies.

10.
Am J Hum Genet ; 109(8): 1484-1499, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35896117

RESUMO

Disorders of the autosomal dominant polycystic kidney disease (ADPKD) spectrum are characterized by the development of kidney cysts and progressive kidney function decline. PKD1 and PKD2, encoding polycystin (PC)1 and 2, are the two major genes associated with ADPKD; other genes include IFT140, GANAB, DNAJB11, and ALG9. Genetic testing remains inconclusive in ∼7% of the families. We performed whole-exome sequencing in a large multiplex genetically unresolved (GUR) family affected by ADPKD-like symptoms and identified a monoallelic frameshift variant (c.703_704delCA) in ALG5. ALG5 encodes an endoplasmic-reticulum-resident enzyme required for addition of glucose molecules to the assembling N-glycan precursors. To identify additional families, we screened a cohort of 1,213 families with ADPKD-like and/or autosomal-dominant tubulointerstitial kidney diseases (ADTKD), GUR (n = 137) or naive to genetic testing (n = 1,076), by targeted massively parallel sequencing, and we accessed Genomics England 100,000 Genomes Project data. Four additional families with pathogenic variants in ALG5 were identified. Clinical presentation was consistent in the 23 affected members, with non-enlarged cystic kidneys and few or no liver cysts; 8 subjects reached end-stage kidney disease from 62 to 91 years of age. We demonstrate that ALG5 haploinsufficiency is sufficient to alter the synthesis of the N-glycan chain in renal epithelial cells. We also show that ALG5 is required for PC1 maturation and membrane and ciliary localization and that heterozygous loss of ALG5 affects PC1 maturation. Overall, our results indicate that monoallelic variants of ALG5 lead to a disorder of the ADPKD-spectrum characterized by multiple small kidney cysts, progressive interstitial fibrosis, and kidney function decline.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Cistos/genética , Fibrose , Humanos , Rim/patologia , Mutação/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Sequenciamento do Exoma
11.
Front Cell Dev Biol ; 10: 903953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693943

RESUMO

Glycosylation is a ubiquitous and universal cellular process in all domains of life. In eukaryotes, many glycosylation pathways occur simultaneously onto proteins and lipids for generating a complex diversity of glycan structures. In humans, severe genetic diseases called Congenital Disorders of Glycosylation (CDG), resulting from glycosylation defects, demonstrate the functional relevance of these processes. No real cure exists so far, but oral administration of specific monosaccharides to bypass the metabolic defects has been used in few CDG, then constituting the simplest and safest treatments. Oral D-Galactose (Gal) therapy was seen as a promising tailored treatment for specific CDG and peculiarly for TMEM165-CDG patients. TMEM165 deficiency not only affects the N-glycosylation process but all the other Golgi-related glycosylation types, then contributing to the singularity of this defect. Our previous results established a link between TMEM165 deficiency and altered Golgi manganese (Mn2+) homeostasis. Besides the fascinating power of MnCl2 supplementation to rescue N-glycosylation in TMEM165-deficient cells, D-Gal supplementation has also been shown to be promising in suppressing the observed N-glycosylation defects. Its effect on the other Golgi glycosylation types, most especially O-glycosylation and glycosaminoglycan (GAG) synthesis, was however unknown. In the present study, we demonstrate the differential impact of D-Gal or MnCl2 supplementation effects on the Golgi glycosylation defects caused by TMEM165 deficiency. Whereas MnCl2 supplementation unambiguously fully rescues the N- and O-linked as well as GAG glycosylations in TMEM165-deficient cells, D-Gal supplementation only rescues the N-linked glycosylation, without any effects on the other Golgi-related glycosylation types. According to these results, we would recommend the use of MnCl2 for TMEM165-CDG therapy.

12.
Thromb Haemost ; 122(9): 1469-1478, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35717947

RESUMO

Phosphomannomutase 2 (PMM2) deficiency is the most prevalent congenital disorder of glycosylation. It is associated with coagulopathy, including protein C deficiency. Since all components of the anticoagulant and cytoprotective protein C system are glycosylated, we sought to investigate the impact of an N-glycosylation deficiency on this system as a whole. To this end, we developed a PMM2 knockdown model in the brain endothelial cell line hCMEC/D3. The resulting PMM2low cells were less able to generate activated protein C (APC), due to lower surface expression of thrombomodulin and endothelial protein C receptor. The low protein levels were due to downregulated transcription of the corresponding genes (THBD and PROCR, respectively), which itself was related to downregulation of transcription regulators Krüppel-like factors 2 and 4 and forkhead box C2. PMM2 knockdown was also associated with impaired integrity of the endothelial cell monolayer-partly due to an alteration in the structure of VE-cadherin in adherens junctions. The expression of protease-activated receptor 1 (involved in the cytoprotective effects of APC on the endothelium) was not affected by PMM2 knockdown. Thrombin stimulation induced hyperpermeability in PMM2low cells. However, pretreatment of cells with APC before thrombin simulation was still associated with a barrier-protecting effect. Taken as a whole, our results show that the partial loss of PMM2 in hCMEC/D3 cells is associated with impaired activation of protein C and a relative increase in barrier permeability.


Assuntos
Proteína C , Trombina , Defeitos Congênitos da Glicosilação , Endotélio , Glicosilação , Humanos , Fosfotransferases (Fosfomutases)/deficiência
13.
Hum Mol Genet ; 31(15): 2571-2581, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35262690

RESUMO

The transmembrane domain recognition complex (TRC) pathway is required for the insertion of C-terminal tail-anchored (TA) proteins into the lipid bilayer of specific intracellular organelles such as the endoplasmic reticulum (ER) membrane. In order to facilitate correct insertion, the recognition complex (consisting of BAG6, GET4 and UBL4A) must first bind to TA proteins and then to GET3 (TRC40, ASNA1), which chaperones the protein to the ER membrane. Subsequently, GET1 (WRB) and CAML form a receptor that enables integration of the TA protein within the lipid bilayer. We report an individual with the homozygous c.633 + 4A>G splice variant in CAMLG, encoding CAML. This variant leads to aberrant splicing and lack of functional protein in patient-derived fibroblasts. The patient displays a predominantly neurological phenotype with psychomotor disability, hypotonia, epilepsy and structural brain abnormalities. Biochemically, a combined O-linked and type II N-linked glycosylation defect was found. Mislocalization of syntaxin-5 in patient fibroblasts and in siCAMLG deleted Hela cells confirms this as a consistent cellular marker of TRC dysfunction. Interestingly, the level of the v-SNARE Bet1L is also drastically reduced in both of these models, indicating a fundamental role of the TRC complex in the assembly of Golgi SNARE complexes. It also points towards a possible mechanism behind the hyposialylation of N and O-glycans. This is the first reported patient with pathogenic variants in CAMLG. CAMLG-CDG is the third disorder, after GET4 and GET3 deficiencies, caused by pathogenic variants in a member of the TRC pathway, further expanding this novel group of disorders.


Assuntos
Retículo Endoplasmático , Bicamadas Lipídicas , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Glicosilação , Células HeLa , Humanos , Bicamadas Lipídicas/análise , Bicamadas Lipídicas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qc-SNARE/análise , Proteínas Qc-SNARE/metabolismo , Ubiquitinas/metabolismo
14.
Hum Genet ; 141(7): 1279-1286, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35182234

RESUMO

Mutations in the X-linked gene MAGT1 cause a Congenital Disorder of Glycosylation (CDG), with two distinct clinical phenotypes: a primary immunodeficiency (XMEN disorder) versus intellectual and developmental disability. It was previously established that MAGT1 deficiency abolishes steady-state expression of the immune response protein NKG2D (encoded by KLRK1) in lymphocytes. Here, we show that the reduced steady-state levels of NKG2D are caused by hypoglycosylation of the protein and we pinpoint the exact site that is underglycosylated in MAGT1-deficient patients. Furthermore, we challenge the possibility that supplementation with magnesium restores NKG2D levels and show that the addition of this ion does not significantly improve NKG2D steady-state expression nor does it rescue the hypoglycosylation defect in CRISPR-engineered human cell lines. Moreover, magnesium supplementation of an XMEN patient did not result in restoration of NKG2D expression on the cell surface of lymphocytes. In summary, we demonstrate that in MAGT1-deficient patients, the lack of NKG2D is caused by hypoglycosylation, further elucidating the pathophysiology of XMEN/MAGT1-CDG.


Assuntos
Proteínas de Transporte de Cátions , Síndromes de Imunodeficiência , Transtornos Linfoproliferativos , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Magnésio/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética
15.
Am J Hum Genet ; 109(2): 345-360, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045343

RESUMO

Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.


Assuntos
Cistos do Sistema Nervoso Central/genética , Defeitos Congênitos da Glicosilação/genética , Hamartoma/genética , Deficiência Intelectual/genética , Oligossacarídeos/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Polimicrogiria/genética , alfa-Manosidase/genética , Adolescente , Alelos , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Linhagem Celular Tumoral , Cistos do Sistema Nervoso Central/metabolismo , Cistos do Sistema Nervoso Central/patologia , Vermis Cerebelar/metabolismo , Vermis Cerebelar/patologia , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Feminino , Feto , Glicosilação , Hamartoma/metabolismo , Hamartoma/patologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Manose/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patologia , Língua/metabolismo , Língua/patologia , alfa-Manosidase/deficiência
16.
Hum Genet ; 141(7): 1287-1298, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34999954

RESUMO

SLC10A7, encoded by the so-called SLC10A7 gene, is the seventh member of a human sodium/bile acid cotransporter family, known as the SLC10 family. Despite similarities with the other members of the SLC10 family, SLC10A7 does not exhibit any transport activity for the typical SLC10 substrates and is then considered yet as an orphan carrier. Recently, SLC10A7 mutations have been identified as responsible for a new Congenital Disorder of Glycosylation (CDG). CDG are a family of rare and inherited metabolic disorders, where glycosylation abnormalities lead to multisystemic defects. SLC10A7-CDG patients presented skeletal dysplasia with multiple large joint dislocations, short stature and amelogenesis imperfecta likely mediated by glycosaminoglycan (GAG) defects. Although it has been demonstrated that the transporter and substrate specificities of SLC10A7, if any, differ from those of the main members of the protein family, SLC10A7 seems to play a role in Ca2+ regulation and is involved in proper glycosaminoglycan biosynthesis, especially heparan-sulfate, and N-glycosylation. This paper will review our current knowledge on the known and predicted structural and functional properties of this fascinating protein, and its link with the glycosylation process.


Assuntos
Amelogênese Imperfeita , Defeitos Congênitos da Glicosilação , Osteocondrodisplasias , Simportadores , Defeitos Congênitos da Glicosilação/genética , Glicosaminoglicanos/genética , Glicosilação , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio
17.
Biol Rev Camb Philos Soc ; 97(2): 732-748, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34873817

RESUMO

N-glycosylation is an important post-translational modification of proteins that has been highly conserved during evolution and is found in Eukaryota, Bacteria and Archaea. In eukaryotes, N-glycan processing is sequential, involving multiple specific steps within the secretory pathway as proteins travel through the endoplasmic reticulum and the Golgi apparatus. In this review, we first summarize the different steps of the N-glycan processing and further describe recent findings regarding the diversity of N-glycan structures in eukaryotic clades. This comparison allows us to explore the different regulation mechanisms of N-glycan processing among eukaryotic clades. Recent findings regarding the regulation of protein N-glycosylation are highlighted, especially the regulation of the biosynthesis of complex-type N-glycans through manganese and calcium homeostasis and the specific role of transmembrane protein 165 (TMEM165) for which homologous sequences have been identified in several eukaryotic clades. Further research will be required to characterize the function of TMEM165 homologous sequences in different eukaryotic clades.


Assuntos
Eucariotos , Complexo de Golgi , Retículo Endoplasmático/metabolismo , Eucariotos/genética , Glicosilação , Complexo de Golgi/metabolismo , Polissacarídeos/metabolismo
18.
Cell Death Dis ; 13(1): 11, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930890

RESUMO

TMEM165 deficiency leads to skeletal disorder characterized by major skeletal dysplasia and pronounced dwarfism. However, the molecular mechanisms involved have not been fully understood. Here, we uncover that TMEM165 deficiency impairs the synthesis of proteoglycans by producing a blockage in the elongation of chondroitin-and heparan-sulfate glycosaminoglycan chains leading to the synthesis of proteoglycans with shorter glycosaminoglycan chains. We demonstrated that the blockage in elongation of glycosaminoglycan chains is not due to defect in the Golgi elongating enzymes but rather to availability of the co-factor Mn2+. Supplementation of cell with Mn2+ rescue the elongation process, confirming a role of TMEM165 in Mn2+ Golgi homeostasis. Additionally, we showed that TMEM165 deficiency functionally impairs TGFß and BMP signaling pathways in chondrocytes and in fibroblast cells of TMEM165 deficient patients. Finally, we found that loss of TMEM165 impairs chondrogenic differentiation by accelerating the timing of Ihh expression and promoting early chondrocyte maturation and hypertrophy. Collectively, our results indicate that TMEM165 plays an important role in proteoglycan synthesis and underline the critical role of glycosaminoglycan chains structure in the regulation of chondrogenesis. Our data also suggest that Mn2+ supplementation may be a promising therapeutic strategy in the treatment of TMEM165 deficient patients.


Assuntos
Antiporters/deficiência , Antiporters/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/metabolismo , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrócitos/patologia , Sulfatos de Condroitina/biossíntese , Nanismo/metabolismo , Proteoglicanas de Heparan Sulfato/biossíntese , Transdução de Sinais/genética , Animais , Antiporters/genética , Estudos de Casos e Controles , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Condrogênese/genética , Nanismo/patologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes/métodos , Glicosilação , Células HEK293 , Humanos , Hipertrofia/metabolismo , Camundongos , Transfecção
19.
JIMD Rep ; 62(1): 22-29, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765394

RESUMO

For the first time the glycosylation of a patient with a MPI-CDG during pregnancy is monitored. MPI-CDG, is characterised by a deficiency in mannose-6-phosphate isomerase (MPI) leading to a reduced pool of glycosylation precursors, impairing the biosynthesis of N-glycans leading to N-glycosylation defects. The abnormal N-glycosylation profile with an elevation of asialotransferrin and disialotransferrin, typical of CDG type I, is assessable by transferrin isoelectrofocusing. Oral D-mannose supplementation for MPI-CDG patients has been widely used and improves clinical manifestations. The glycosylation of a MPI-CDG patient during pregnancy without mannose supplementation was studied using carbohydrate deficient transferrin (CDT) assay, transferrin isoelectrofocusing (IEF) and mass spectrometry of total serum N-glycans. A general improvement of the glycosylation profile of the patient due to a better transfer of the glycan precursors as well as an increase of the triantennary glycans (and sialylation) was observed. In conclusion, in the absence of mannose supplementation, the previously observed glycosylation abnormality of the MPI-CDG patient was corrected. The molecular mechanism underlying this N-glycosylation rescue during MPI-CDG pregnancy further needs to be investigated.

20.
Med Sci (Paris) ; 37(6-7): 609-617, 2021.
Artigo em Francês | MEDLINE | ID: mdl-34180820

RESUMO

Glycosylation is one of the essential modifications of proteins and lipids. It is carried out mainly in the endoplasmic reticulum and Golgi apparatus, and requires a specific molecular machinery associating several hundreds of glycosyltransferases, glycosidases, transporters and regulating proteins. Modifications of glycosylation are found in numerous diseases, notably in cancers. All types of glycosylation can be affected and this leads to dysfunctions of cellular metabolism. In this review, we present the current knowledge on the regulation of glycosylation mechanisms and illustrate how the alteration of these regulatory mechanisms can lead to abnormal protein and lipid glycosylation, and take part in the development of cancers.


TITLE: Les mécanismes de régulation de la glycosylation - Exemples d'altérations des chaînes glycanniques dans les cancers. ABSTRACT: La glycosylation est l'une des modifications essentielles des protéines et des lipides. Elle s'effectue principalement dans le réticulum endoplasmique et l'appareil de Golgi et fait appel à une machinerie moléculaire spécifique, associant plusieurs centaines de glycosyltransférases, de glycosidases, de transporteurs et de protéines régulatrices. Des modifications de la glycosylation sont retrouvées dans certaines maladies, notamment dans les cancers. Ces altérations peuvent affecter toutes les formes de glycosylation réticulaires et/ou golgiennes, et conduire à des dysfonctionnements du métabolisme cellulaire. Dans cette revue, nous présentons l'état actuel des connaissances des mécanismes de la glycosylation. Nous illustrerons, au travers d'exemples représentatifs, comment l'altération de certains de ces mécanismes de régulation peut affecter les différentes formes de glycosylation des protéines et des lipides et participer au développement des cancers.


Assuntos
Complexo de Golgi , Retículo Endoplasmático/metabolismo , Glicosilação , Glicosiltransferases/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA