Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Autoimmun ; 140: 103125, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37844543

RESUMO

Interleukin-2 (IL-2) therapies targeting the high affinity IL-2 receptor expressed on regulatory T cells (Tregs) have shown promising therapeutic benefit in autoimmune diseases through nonselective expansion of pre-existing Treg populations, but are potentially limited by the inability to induce antigen-specific Tregs, as well as by dose-limiting activation of effector immune cells in settings of inflammation. We recently developed biodegradable nanoparticles encapsulating rapamycin, called ImmTOR, which induce selective immune tolerance to co-administered antigens but do not increase total Treg numbers. Here we demonstrate that the combination of ImmTOR and an engineered Treg-selective IL-2 variant (termed IL-2 mutein) increases the number and durability of total Tregs, as well as inducing a profound synergistic increase in antigen-specific Tregs when combined with a target antigen. We demonstrate that the combination of ImmTOR and an IL-2 mutein leads to durable inhibition of antibody responses to co-administered AAV gene therapy capsid, even at sub-optimal doses of ImmTOR, and provides protection in autoimmune models of type 1 diabetes and primary biliary cholangitis. Importantly, ImmTOR also increases the therapeutic window of engineered IL-2 molecules by mitigating effector immune cell expansion and preventing exacerbation of disease in a model of graft-versus-host-disease. At the same time, IL-2 mutein shows potential for dose-sparing of ImmTOR. Overall, these results establish that the combination of ImmTOR and an IL-2 mutein show synergistic benefit on both safety and efficacy to provide durable antigen-specific immune tolerance to mitigate drug immunogenicity and to treat autoimmune diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...