Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 352: 119981, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38198837

RESUMO

Urine diversion in toilets is a promising strategy to maximise nutrient recovery and produce low-cost urine-derived fertilisers. There are various methods for nutrient recovery from urine, including precipitation and adsorption onto porous media, such as biochars. This study uses faecal-derived biochars to produce and, for the first time, comprehensively characterise enriched biochar fertilisers with the addition of fully hydrolysed undiluted human urine. The evolution of urea hydrolysis and nutrient content during urine storage was initially investigated over a 6-month storage period and NH4+ adsorption mechanisms studied under varying biochar doses and NH4-N concentrations. The process was further optimised by adding MgO to induce precipitation reactions, enabling the combined recovery of NH4+ and P. For NH4+ adsorption, experimental data exhibited a good fit to both the Freundlich (R2 = 0.989) and Langmuir (R2 = 0.974) isotherm models and the rate of the reaction was well described by a pseudo 2nd order kinetics model (R2 = 0.988). The NH4+ uptake was rapid during the initial 2 h of the reaction and the adsorption process reached completion after 24 h. The NH4-N adsorption capacity of the faecal-derived biochar was 19.8 mg/g and the main adsorption mechanism identified was ion exchange (K+ ↔ NH4+), as confirmed by XRD and ICP-OES. The effect of different biochar doses (0, 25, 50, 100 g/L) and MgO addition scenarios (Mg:P = 0, 1.5, 4) on N and P recovery showed that the combination of MgO (Mg:P = 1.5) with the lower biochar dose (25 g/L) produced the most NP-rich fertiliser product which was easily separated from the urine. Faecal-derived biochar had a limited adsorption capacity for P, with precipitation being the main mechanism for P recovery. When MgO was added to urine, >98% of total P was recovered via precipitation of struvite/struvite-K and substituted hydroxyapatite, as identified via SEM-EDX. Faecal-derived biochar was a successful carrier to recover the P-containing precipitates and facilitate liquid-solid separation after treatment. The findings of this study provide proof-of concept for the systemic management of source separated human excreta and pave the way for the production of marketable waste-derived fertilisers from on-site sanitation systems.


Assuntos
Fosfatos , Fósforo , Humanos , Estruvita , Óxido de Magnésio , Adsorção , Nitrogênio , Fertilizantes , Carvão Vegetal
2.
J Environ Manage ; 338: 117782, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37015142

RESUMO

More people globally are now using on-site sanitation technologies than sewered connections. The management of faecal sludge generated by on-site facilities is still challenging and requires an understanding of all sanitation service chain components and their interactions; from source conditions to treatment and resource recovery. This study aimed to improve the current lack of knowledge regarding these interactions, by establishing a quantifiable relationship between human excreta source separation and resource recovery via pyrolysis. The effects of source separation of faeces and urine on biochar quality were investigated for different pyrolysis temperatures (450 °C, 550 °C, 650 °C) and this information was used to assess energy and nutrient recovery. Results quantify the benefits of urine diversion for nitrogen recovery (70% of total N losses during thermal treatment avoided) and show an increase in the liming potential of the produced faecal-based biochars. The quality of produced solid fuels is also improved when source-separated faeces (SSF) are used as a feedstock for pyrolysis, including a 50% increase in char calorific value. On the other hand, biochars from mixed urine and faeces (MUF) are more rich in phosphorus and potassium, and surface morphology investigation indicates higher porosity compared to SSF biochars. The high salinity of MUF biochars should be considered before agricultural applications. For both biochar types (SSF, MUF), the presence of phosphate compounds of high fertiliser value was confirmed by X-ray diffraction analysis, and temperatures around 500 °C are recommended to optimise nutrient and carbon behaviour when pyrolysing human excreta. These findings can be used for the design of circular faecal sludge management systems, linking resource recovery objectives to source conditions, and vice-versa. Ultimately, achieving consistent resource recovery from human excreta can act as an incentive for universal access to safe and sustainable sanitation.


Assuntos
Pirólise , Esgotos , Humanos , Carvão Vegetal , Carbono
3.
Chemosphere ; 286(Pt 3): 131888, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34418652

RESUMO

In-situ chemical regeneration of granular activated carbon (GAC) may represent an advantageous alternative to conventional off-site thermal regeneration in water treatment applications. The performance of chemical regeneration of carbon exhausted by metaldehyde and isoproturon was investigated using rapid small-scale column tests, performed using a sequence of pesticide adsorption and chemical regeneration cycles with a novel alkaline-organic regenerant solution. A fresh regenerant solution was able to achieve 82% and 45% regeneration of carbon exhausted by metaldehyde and isoproturon, respectively. After the first regeneration, the performance declined slightly to 79%, and to 36% after the fourth regeneration. A comparison using a thermally regenerated (operational) carbon suggested that chemical regeneration was more beneficial for carbon exhausted by metaldehyde. The regenerant solution has a potential to be re-used multiple times, thereby minimizing the amount of waste chemicals generated. A series of carbon characterization tests showed that chemical regeneration did not alter the surface area, pore size distribution and surface chemistry of the carbon. As part of the evaluation, the adsorption thermodynamics of virgin and chemically regenerated carbons were determined using isothermal titration calorimetry to evaluate the adsorption behaviour of the pesticides on the carbon samples. The relatively high regeneration efficiency achieved by chemical regeneration, and minimal deleterious effect to the physico-chemical properties of the carbon, demonstrated the beneficial potential of this process as an alternative to conventional thermal regeneration of GAC.


Assuntos
Praguicidas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal
4.
J Environ Manage ; 298: 113456, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364246

RESUMO

Sludge treatment is an integral part of faecal sludge management in non-sewered sanitation settings. Development of pyrolysis as a suitable sludge treatment method requires thorough knowledge about the properties and thermal decomposition mechanisms of the feedstock. This study aimed to improve the current lack of understanding concerning relevant sludge properties and their influence on the thermal decomposition characteristics. Major organic compounds (hemicellulose, cellulose, lignin, protein, oil and grease, other carbohydrates) were quantified in 30 faecal sludge samples taken from different sanitation technologies, providing the most comprehensive organic faecal sludge data set to date. This information was used to predict the sludge properties crucial to pyrolysis (calorific value, fixed carbon, volatile matter, carbon, hydrogen). Samples were then subjected to thermogravimetric analysis to delineate the influence of organic composition on thermal decomposition. Septic tanks showed lower median fractions of lignin (9.4%dwb) but higher oil and grease (10.7%dwb), compared with ventilated improved pit latrines (17.4%dwb and 4.6%dwb respectively) and urine diverting dry toilets (17.9%dwb and 4.7%dwb respectively). High fixed carbon fractions in lignin (45.1%dwb) and protein (18.8%dwb) suggested their importance for char formation, while oil and grease fully volatilised. For the first time, this study provided mechanistic insights into faecal sludge pyrolysis as a function of temperature and feedstock composition. Classification into the following three phases was proposed: decomposition of hemicellulose, cellulose, other carbohydrates, proteins and, partially, lignin (200-380 °C), continued decomposition of lignin and thermal cracking of oil and grease (380-500 °C) and continued carbonisation (>500 °C). The findings will facilitate the development and optimisation of faecal sludge pyrolysis, emphasising the importance of considering the organic composition of the feedstock.


Assuntos
Pirólise , Esgotos , Fezes , Saneamento , Banheiros
5.
J Environ Manage ; 280: 111658, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33246749

RESUMO

Thermal processes for the treatment of faecal sludge such as pyrolysis or combustion offer complete destruction of pathogens, whilst allowing for energy and nutrient recovery. The development of such processes is currently constrained by a lack of knowledge on thermally relevant faecal sludge characteristics. This study investigated thirty faecal sludge samples from three sanitation technologies (ventilated improved pit latrines (VIP), urine diverting dry toilets (UD), septic tanks (ST)) and compared these by non-parametric statistical analysis. A focus was placed on parameters necessary for thermal process development and recoverable nutrient concentrations. The relevant characteristics ranged widely within technology groups. Calorific values and ash concentrations of 2.1-25.7 MJ/kg and 9.5-88.4% were observed for STs, of 9.2-13.9 MJ/kg and 40.9-61.5% for VIPs and of 3.9-18.1 MJ/kg and 18.8-81.3% for UDs. These two parameters show a strong linear inverse correlation and determine the minimum dewatering requirements from which a net energy recovery may be possible. Results suggest that more than 90% of samples can meet these requirements following commonly used dewatering technologies. A comparison across technologies provided strong evidence that the faecal sludge source significantly influences sludge composition, emphasized by higher median ratios of fixed carbon to volatile matter in VIPs (0.23) and UDs (0.23) compared to STs (0.15). The sanitation technology also influenced recoverable nutrient concentrations, with phosphorus and potassium concentrations generally ranging between 5.8-49.2 g/kg and 1.4-26.1 g/kg respectively. Compared to STs, median concentrations of phosphorus and potassium in VIPs were 3.4 and 3.8 times higher respectively, and 3.0 and 8.8 times higher in UDs. The findings highlight the importance of considering the faecal sludge source in the development of thermal treatment processes. This study provides critical knowledge to further develop such processes through modelling, experimental and scaled approaches.


Assuntos
Esgotos , Banheiros , Fezes , Fósforo , Saneamento
6.
Water Res ; 169: 115253, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31707178

RESUMO

Unsafe disposal of faecal sludge from onsite sanitation in low-income countries has detrimental effects on public health and the environment. The production of biochar from faecal sludge offers complete destruction of pathogens and a value-added treatment product. To date, research has been limited to the laboratory. This study evaluates the biochars produced from the co-treatment of faecal sludge from septic tanks and agricultural waste at two full-scale treatment plants in India by determining their physical and chemical properties to establish their potential applications. The process yielded macroporous, powdery biochars that can be utilised for soil amendment or energy recovery. Average calorific values reaching 14.9 MJ/kg suggest use as solid fuel, but are limited by a high ash content. Phosphorus and potassium are enriched in the biochar but their concentrations are restricted by the nutrient-depleted nature of septic tank faecal sludge. High concentrations of calcium and magnesium led to a liming potential of up to 20.1% calcium carbonate equivalents, indicating suitability for use on acidic soils. Heavy metals present in faecal sludge were concentrated in the biochar and compliance for soil application will depend on local regulations. Nevertheless, heavy metal mobility was considerably reduced, especially for Cu and Zn, by 51.2-65.2% and 48.6-59.6% respectively. Co-treatment of faecal sludge with other carbon-rich waste streams can be used to influence desired biochar properties. In this case, the addition of agricultural waste increased nutrient and fixed carbon concentrations, as well as providing an additional source of energy. This study is a proof of concept for biochar production achieving full-scale faecal sludge treatment. The findings will help inform appropriate use of the treatment products as this technology becomes more commonly applied.


Assuntos
Metais Pesados , Poluentes do Solo , Carvão Vegetal , Índia , Esgotos , Solo
7.
Water Res ; 95: 1-10, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26978716

RESUMO

Coagulation prior to ultrafiltration (UF) is widely applied for treating contaminated surface water sources for potable supply. While beneficial, coagulation alone is unable to control membrane fouling effectively in many cases, and there is continuing interest in the use of additional, complementary methods such as oxidation in the pre-treatment of raw water prior to UF. In this study, the application of ozone at low dose in the membrane tank immediately following coagulation has been evaluated at laboratory-scale employing model raw water. In parallel tests with and without the application of ozone, the impact of applied ozone doses of 0.5 mg L(-1) and 1.5 mg L(-1) (approximately 0.18 mg L(-1) and 0.54 mg L(-1) consumed ozone, respectively) on the increase of trans-membrane pressure (TMP) was evaluated and correlated with the quantity and nature of membrane deposits, both as a cake layer and within membrane pores. The results showed that a dose of 0.5 mgO3 L(-1) gave a membrane fouling rate that was substantially lower than without ozone addition, while a dose of 1.5 mgO3 L(-1) was able to prevent fouling effects significantly (no increase in TMP). Ozone was found to decrease the concentration of bacteria (especially the concentration of bacteria per suspended solid) in the membrane tank, and to alter the nature of dissolved organic matter by increasing the proportion of hydrophilic substances. Ozone decreased the concentration of extracellular polymeric substances (EPS), such as polysaccharides and proteins, in the membrane cake layer; the reduced EPS and bacterial concentrations resulted in a much thinner cake layer, although the suspended solids concentration was much higher in the ozone added membrane tank. Ozone also decreased the accumulation and hydrophobicity of organic matter within the membrane pores, leading to minimal irreversible fouling. Therefore, the application of low-dose ozone within the UF membrane tank is a potentially important approach for fully mitigating membrane fouling.


Assuntos
Ultrafiltração , Purificação da Água , Água Potável , Membranas Artificiais , Ozônio
8.
J Environ Manage ; 91(12): 2432-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20678857

RESUMO

This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L(-1)). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles.


Assuntos
Fenol/isolamento & purificação , Esgotos/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...