Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 30182, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27443509

RESUMO

Amyloid ß1-42 (Aß1-42) plays a central role in Alzheimer's disease. The link between structure, assembly and neuronal toxicity of this peptide is of major current interest but still poorly defined. Here, we explored this relationship by rationally designing a variant form of Aß1-42 (vAß1-42) differing in only two amino acids. Unlike Aß1-42, we found that the variant does not self-assemble, nor is it toxic to neuronal cells. Moreover, while Aß1-42 oligomers impact on synaptic function, vAß1-42 does not. In a living animal model system we demonstrate that only Aß1-42 leads to memory deficits. Our findings underline a key role for peptide sequence in the ability to assemble and form toxic structures. Furthermore, our non-toxic variant satisfies an unmet demand for a closely related control peptide for Aß1-42 cellular studies of disease pathology, offering a new opportunity to decipher the mechanisms that accompany Aß1-42-induced toxicity leading to neurodegeneration.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doenças Neurodegenerativas/metabolismo , Sequência de Aminoácidos , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Transtornos da Memória/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Ratos
2.
Nat Commun ; 6: 8043, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26292808

RESUMO

Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution.


Assuntos
Hipocampo/citologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura , Animais , Endocitose/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...