Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Function (Oxf) ; 3(6): zqac041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325511

RESUMO

The process of urine removal from the kidney occurs via the renal pelvis (RP). The RP demarcates the beginning of the upper urinary tract and is endowed with smooth muscle cells. Along the RP, organized contraction of smooth muscle cells generates the force required to move urine boluses toward the ureters and bladder. This process is mediated by specialized pacemaker cells that are highly expressed in the proximal RP that generate spontaneous rhythmic electrical activity to drive smooth muscle depolarization. The mechanisms by which peristaltic contractions propagate from the proximal to distal RP are not fully understood. In this study, we utilized a transgenic mouse that expresses the genetically encoded Ca2+ indicator, GCaMP3, under a myosin heavy chain promotor to visualize spreading peristaltic contractions in high spatial detail. Using this approach, we discovered variable effects of L-type Ca2+ channel antagonists on contraction parameters. Inhibition of T-type Ca2+ channels reduced the frequency and propagation distance of contractions. Similarly, antagonizing Ca2+-activated Cl- channels or altering the transmembrane Cl- gradient decreased contractile frequency and significantly inhibited peristaltic propagation. These data suggest that voltage-gated Ca2+ channels are important determinants of contraction initiation and maintain the fidelity of peristalsis as the spreading contraction moves further toward the ureter. Recruitment of Ca2+-activated Cl- channels, likely Anoctamin-1, and T-type Ca2+ channels are required for efficiently conducting the depolarizing current throughout the length of the RP. These mechanisms are necessary for the efficient removal of urine from the kidney.


Assuntos
Peristaltismo , Ureter , Camundongos , Animais , Peristaltismo/fisiologia , Pelve Renal/fisiologia , Ureter/fisiologia , Rim , Músculo Liso/fisiologia
2.
Epidemiology ; 33(4): 470-479, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35545230

RESUMO

Accurate measurement of daily infection incidence is crucial to epidemic response. However, delays in symptom onset, testing, and reporting obscure the dynamics of transmission, necessitating methods to remove the effects of stochastic delays from observed data. Existing estimators can be sensitive to model misspecification and censored observations; many analysts have instead used methods that exhibit strong bias. We develop an estimator with a regularization scheme to cope with stochastic delays, which we term the robust incidence deconvolution estimator. We compare the method to existing estimators in a simulation study, measuring accuracy in a variety of experimental conditions. We then use the method to study COVID-19 records in the United States, highlighting its stability in the face of misspecification and right censoring. To implement the robust incidence deconvolution estimator, we release incidental, a ready-to-use R implementation of our estimator that can aid ongoing efforts to monitor the COVID-19 pandemic.


Assuntos
COVID-19 , Modelos Estatísticos , COVID-19/epidemiologia , Interpretação Estatística de Dados , Humanos , Pandemias , Fatores de Tempo
3.
Annu Rev Stat Appl ; 9(1): 289-319, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37840549

RESUMO

Introduced more than a half-century ago, Granger causality has become a popular tool for analyzing time series data in many application domains, from economics and finance to genomics and neuroscience. Despite this popularity, the validity of this framework for inferring causal relationships among time series has remained the topic of continuous debate. Moreover, while the original definition was general, limitations in computational tools have constrained the applications of Granger causality to primarily simple bivariate vector autoregressive processes. Starting with a review of early developments and debates, this article discusses recent advances that address various shortcomings of the earlier approaches, from models for high-dimensional time series to more recent developments that account for nonlinear and non-Gaussian observations and allow for subsampled and mixed-frequency time series.

4.
IEEE Trans Pattern Anal Mach Intell ; 44(8): 4267-4279, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33705309

RESUMO

While most classical approaches to Granger causality detection assume linear dynamics, many interactions in real-world applications, like neuroscience and genomics, are inherently nonlinear. In these cases, using linear models may lead to inconsistent estimation of Granger causal interactions. We propose a class of nonlinear methods by applying structured multilayer perceptrons (MLPs) or recurrent neural networks (RNNs) combined with sparsity-inducing penalties on the weights. By encouraging specific sets of weights to be zero-in particular, through the use of convex group-lasso penalties-we can extract the Granger causal structure. To further contrast with traditional approaches, our framework naturally enables us to efficiently capture long-range dependencies between series either via our RNNs or through an automatic lag selection in the MLP. We show that our neural Granger causality methods outperform state-of-the-art nonlinear Granger causality methods on the DREAM3 challenge data. This data consists of nonlinear gene expression and regulation time courses with only a limited number of time points. The successes we show in this challenging dataset provide a powerful example of how deep learning can be useful in cases that go beyond prediction on large datasets. We likewise illustrate our methods in detecting nonlinear interactions in a human motion capture dataset.


Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , Modelos Lineares
5.
Front Endocrinol (Lausanne) ; 13: 1096325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714600

RESUMO

Algorithm-enabled patient prioritization and remote patient monitoring (RPM) have been used to improve clinical workflows at Stanford and have been associated with improved glucose time-in-range in newly diagnosed youth with type 1 diabetes (T1D). This novel algorithm-enabled care model currently integrates continuous glucose monitoring (CGM) data to prioritize patients for weekly reviews by the clinical diabetes team. The use of additional data may help clinical teams make more informed decisions around T1D management. Regular exercise and physical activity are essential to increasing cardiovascular fitness, increasing insulin sensitivity, and improving overall well-being of youth and adults with T1D. However, exercise can lead to fluctuations in glycemia during and after the activity. Future iterations of the care model will integrate physical activity metrics (e.g., heart rate and step count) and physical activity flags to help identify patients whose needs are not fully captured by CGM data. Our aim is to help healthcare professionals improve patient care with a better integration of CGM and physical activity data. We hypothesize that incorporating exercise data into the current CGM-based care model will produce specific, clinically relevant information such as identifying whether patients are meeting exercise guidelines. This work provides an overview of the essential steps of integrating exercise data into an RPM program and the most promising opportunities for the use of these data.


Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Adolescente , Humanos , Diabetes Mellitus Tipo 1/terapia , Hipoglicemiantes , Glicemia , Automonitorização da Glicemia , Exercício Físico , Algoritmos
6.
NPJ Digit Med ; 4(1): 152, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707199

RESUMO

Restricting in-person interactions is an important technique for limiting the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Although early research found strong associations between cell phone mobility and infection spread during the initial outbreaks in the United States, it is unclear whether this relationship persists across locations and time. We propose an interpretable statistical model to identify spatiotemporal variation in the association between mobility and infection rates. Using 1 year of US county-level data, we found that sharp drops in mobility often coincided with declining infection rates in the most populous counties in spring 2020. However, the association varied considerably in other locations and across time. Our findings are sensitive to model flexibility, as more restrictive models average over local effects and mask much of the spatiotemporal variation. We conclude that mobility does not appear to be a reliable leading indicator of infection rates, which may have important policy implications.

7.
SIAM J Math Data Sci ; 3(1): 83-112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37859797

RESUMO

We present a framework for learning Granger causality networks for multivariate categorical time series based on the mixture transition distribution (MTD) model. Traditionally, MTD is plagued by a nonconvex objective, non-identifiability, and presence of local optima. To circumvent these problems, we recast inference in the MTD as a convex problem. The new formulation facilitates the application of MTD to high-dimensional multivariate time series. As a baseline, we also formulate a multi-output logistic autoregressive model (mLTD), which while a straightforward extension of autoregressive Bernoulli generalized linear models, has not been previously applied to the analysis of multivariate categorial time series. We establish identifiability conditions of the MTD model and compare them to those for mLTD. We further devise novel and efficient optimization algorithms for MTD based on our proposed convex formulation, and compare the MTD and mLTD in both simulated and real data experiments. Finally, we establish consistency of the convex MTD in high dimensions. Our approach simultaneously provides a comparison of methods for network inference in categorical time series and opens the door to modern, regularized inference with the MTD model.

8.
Curr Opin Neurobiol ; 55: 48-54, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30739880

RESUMO

We present recent literature on model-based approaches to estimating functional connectivity from neuroimaging data. In contrast to the typical focus on a particular scientific question, we reframe a wider literature in terms of the underlying statistical model used. We distinguish between directed versus undirected and static versus time-varying connectivity. There are numerous advantages to a model-based approach, including easily specified inductive bias, handling limited data scenarios, and building complex models from simpler building blocks.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Encéfalo , Modelos Estatísticos
9.
J R Stat Soc Series B Stat Methodol ; 79(5): 1295-1366, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29200934

RESUMO

Statistical network modelling has focused on representing the graph as a discrete structure, namely the adjacency matrix. When assuming exchangeability of this array-which can aid in modelling, computations and theoretical analysis-the Aldous-Hoover theorem informs us that the graph is necessarily either dense or empty. We instead consider representing the graph as an exchangeable random measure and appeal to the Kallenberg representation theorem for this object. We explore using completely random measures (CRMs) to define the exchangeable random measure, and we show how our CRM construction enables us to achieve sparse graphs while maintaining the attractive properties of exchangeability. We relate the sparsity of the graph to the Lévy measure defining the CRM. For a specific choice of CRM, our graphs can be tuned from dense to sparse on the basis of a single parameter. We present a scalable Hamiltonian Monte Carlo algorithm for posterior inference, which we use to analyse network properties in a range of real data sets, including networks with hundreds of thousands of nodes and millions of edges.

11.
Artif Intell ; 216: 55-75, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25284825

RESUMO

Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blown clinical seizures. We believe the relationship between these two classes of events-something not previously studied quantitatively-could yield important insights into the nature and intrinsic dynamics of seizures. A goal of our work is to parse these complex epileptic events into distinct dynamic regimes. A challenge posed by the intracranial EEG (iEEG) data we study is the fact that the number and placement of electrodes can vary between patients. We develop a Bayesian nonparametric Markov switching process that allows for (i) shared dynamic regimes between a variable number of channels, (ii) asynchronous regime-switching, and (iii) an unknown dictionary of dynamic regimes. We encode a sparse and changing set of dependencies between the channels using a Markov-switching Gaussian graphical model for the innovations process driving the channel dynamics and demonstrate the importance of this model in parsing and out-of-sample predictions of iEEG data. We show that our model produces intuitive state assignments that can help automate clinical analysis of seizures and enable the comparison of sub-clinical bursts and full clinical seizures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...