Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(3): e0089921, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34060329

RESUMO

One of the defining features of Staphylococcus aureus is its ability to evade and impair the human immune response through expression of staphylococcal protein A (SpA). Herein, we describe a previously unknown mechanism by which SpA can form toxic immune complexes when in the presence of human serum, which leads to the loss of human leukocytes. Further, we demonstrate that these toxic complexes are formed specifically through SpA's interaction with intact human IgG and that, in the presence of purified IgG Fab and Fc fragments, SpA shows no such toxicity. The mechanism of action of this toxicity appears to be one mediated by necrosis and not by apoptosis, as previously hypothesized, with up to 90% of human B cells rapidly becoming necrotic following stimulation with SpA-IgG complexes. This phenomenon depends on the immunoglobulin binding capacity of SpA, as a nonbinding mutant of SpA did not induce necrosis. Importantly, immune sera raised against SpA had the capacity to significantly reduce the observed toxicity. An unprecedented toxic effect of SpA-IgG complexes on monocytes was also observed, suggesting the existence of a novel mechanism independent from the interaction of SpA with the B cell receptor. Together, these data implicate SpA in inducing indiscriminate leukocyte toxicity upon formation of complexes with IgG and highlight the requirement for vaccination strategies to inhibit this mechanism. IMPORTANCE Staphylococcus aureus is one of the largest health care threats faced by humankind, with a reported mortality rate within the United States greater than that of HIV/AIDS, tuberculosis, and viral hepatitis combined. One of the defining features of S. aureus as a human pathogen is its ability to evade and impair the human immune response through expression of staphylococcal protein A. Herein, we show that SpA induces necrosis in various immune cells by complexing with human immunoglobulins. Vaccination of mice with a nontoxigenic SpA mutant induced sera capable of inhibiting this mechanism. These observations shed new light on the toxic mechanisms of this key staphylococcal virulence factor and on protective modalities of SpA-based vaccination.


Assuntos
Complexo Antígeno-Anticorpo , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Imunoglobulina G/metabolismo , Necrose/imunologia , Proteína Estafilocócica A/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Proteína Estafilocócica A/administração & dosagem , Proteína Estafilocócica A/imunologia , Staphylococcus aureus/metabolismo , Vacinação
2.
Immunometabolism ; 1: e190014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31595191

RESUMO

Natural Killer (NK) cells are lymphocytes with an important role in anti-tumour responses. NK cells bridge the innate and adaptive arms of the immune system; they are primed for immediate anti-tumour function but can also have prolonged actions alongside the adaptive T cell response. However, the key signals and cellular processes that are required for extended NK cell responses are not fully known. Herein we show that murine NK cell interaction with tumour cells induces the expression of CD25, the high affinity IL2 receptor, rendering these NK cells highly sensitive to the T cell-derived cytokine IL2. In response to IL2, CD25high NK cells show robust increases in metabolic signalling pathways (mTORC1, cMyc), nutrient transporter expression (CD71, CD98), cellular growth and in NK cell effector functions (IFNγ, granzyme B). Specific ligation of an individual activating NK cell receptor, NK1.1, showed similar increases in CD25 expression and IL2-induced responses. NK cell receptor ligation and IL2 collaborate to induce mTORC1/cMyc signalling leading to high rates of glycolysis and oxidative phosphorylation (OXPHOS) and prolonged NK cell survival. Disrupting mTORC1 and cMyc signalling in CD25high tumour interacting NK cells prevents IL2-induced cell growth and function and compromises NK cell viability. This study reveals that tumour cell interactions and T cell-derived IL2 cooperate to promote robust and prolonged NK cell anti-tumour metabolic responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...