Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1426446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070793

RESUMO

Introduction: Preclinical studies suggest that cannabinoid receptor type 2 (CB2R) activation has a therapeutic effect in animal models on chronic inflammation and vascular permeability, which are key pathological features of diabetic retinopathy (DR). A novel CB2R agonist, triazolopyrimidine RG7774, was generated through lead optimization of a high-throughput screening hit. The aim of this study was to characterize the pharmacology, absorption, distribution, metabolism, elimination, and toxicity (ADMET) profile of RG7774, and to explore its potential for managing the key pathological features associated with retinal disease in rodents. Methods: The in vitro pharmacology of RG7774 was investigated for CB2R binding and receptor activation using recombinant human and mouse CB2R expression in Chinese hamster ovary cells, and endogenous CB2R expression in human Jurkat cells, and rat and mouse spleen cells. The ADMET profile was evaluated and the effects of RG7774 on retinal permeability, leukocyte adhesion, and choroidal neovascularization (CNV) were investigated in rodent models of retinal disease. Pharmacokinetic (PK) parameters and the exposure-response relationship were characterized in healthy animals and in animals with laser-induced CNV. Results: RG7774 was found to be a potent (EC50: 2.8 nM and Ki: 51.3 nM), selective, and full CB2R agonist with no signs of cannabinoid receptor type 1 (CB1R) binding or activation. The ligand showed a favorable ADMET profile and exhibited systemic and ocular exposure after oral delivery. Functional potency in vitro translated from recombinant to endogenous expression systems. In vivo, orally administered RG7774 reduced retinal permeability and leukocyte adhesion in rodents with lipopolysaccharide (LPS)-induced uveitis and streptozotocin (STZ)-induced DR, and reduced lesion areas in rats with laser-induced CNV with an ED50 of 0.32 mg/kg. Anatomically, RG7774 reduced the migration of retinal microglia to retinal lesions. Discussion: RG7774 is a novel, highly selective, and orally bioavailable CB2R agonist, with an acceptable systemic and ocular PK profile, and beneficial effects on retinal vascular permeability, leukocyte adhesion, and ocular inflammation in rodent animal models. Results support the development of RG7774 as a potential treatment for retinal diseases with similar pathophysiologies as addressed by the animal models.

2.
Lab Anim (NY) ; 53(8): 196-204, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060633

RESUMO

Subretinal fibrosis is associated with worse visual outcomes in patients with neovascular age-related macular degeneration. As there is a lack of optimal biomarkers and no method that directly detects collagen in the back of the eye, novel tools that monitor fibrosis-related changes in neovascular age-related macular degeneration are needed. Here, using two mouse models (the laser-induced choroidal neovascularization model, and the JR5558 mouse presenting with spontaneous subretinal neovascularization with fibrosis), we imaged active fibrotic lesions using fluorescently labeled collagen hybridizing peptides (CHPs), short peptides that bind to single α-chain collagen structures during collagen remodeling. JR5558 retinal pigment epithelium/choroid flat mounts showed CHP co-staining with fibrosis and epithelial mesenchymal transition-related markers; additionally, CHP histopathology staining correlated with in vivo CHP imaging. After laser-induced choroidal neovascularization, in vivo CHP binding correlated with laser intensity, histopathology CHP and fibronectin staining. Laser-induced choroidal neovascularization showed decreased CHP intensity over time in healing/regressing versus active scars in vivo, whereas increased CHP binding correlated with elevated fibrosis in JR5558 mouse eyes with age. In bispecific angiopoietin 2/vascular endothelial growth factor antibody-treated JR5558 mice, CHPs detected significantly decreased collagen remodeling versus immunoglobulin G control. These results demonstrate the first use of CHPs to directly image remodeling collagen in the eye and as a potential clinical optical biomarker of active subretinal fibrosis associated with ocular neovascularization.


Assuntos
Colágeno , Fibrose , Animais , Camundongos , Colágeno/metabolismo , Peptídeos , Modelos Animais de Doenças , Neovascularização de Coroide/patologia , Camundongos Endogâmicos C57BL , Retina/patologia , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/patologia
3.
Sci Rep ; 13(1): 9226, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286795

RESUMO

Breakdown of blood-retinal barrier integrity underpins pathological changes in numerous ocular diseases, including neovascular age-related macular degeneration (nAMD) and diabetic macular edema (DME). Whilst anti-vascular endothelial growth factor (VEGF) therapies have revolutionised disease treatment, novel therapies are still required to meet patients' unmet needs. To help develop new treatments, robust methods are needed to measure changes in vascular permeability in ocular tissues in animal models. We present here a method for detecting vascular permeability using fluorophotometry, which enables real-time measurements of fluorescent dye accumulation in different compartments of the mouse eye. We applied this method in several mouse models with different increased vascular leakage, including models of uveitis, diabetic retinopathy and choroidal neovascularization (CNV). Furthermore, in the JR5558 mouse model of CNV, we observed with anti-VEGF post-treatment a longitudinal reduction in permeability, in the same animal eyes. We conclude fluorophotometry is a useful method for measuring vascular permeability in the mouse eye, and can be used over multiple time points, without the need to sacrifice the animal. This method has the potential to be used in both basic research for studying the progression and factors underlying disease, but also for drug discovery and development of novel therapeutics.


Assuntos
Neovascularização de Coroide , Retinopatia Diabética , Edema Macular , Camundongos , Animais , Fluorofotometria , Retinopatia Diabética/metabolismo , Permeabilidade Capilar , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças
5.
Diabetologia ; 61(11): 2422-2432, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30094465

RESUMO

AIMS/HYPOTHESIS: Diabetic retinopathy is increasing in prevalence worldwide and is fast becoming a global epidemic and a leading cause of visual loss. Current therapies are limited, and the development of effective treatments for diabetic retinopathy requires a greater in-depth knowledge of disease progression and suitable modelling of diabetic retinopathy in animals. The aim of this study was to assess the early pathological changes in retinal morphology and neuronal, inflammatory and vascular features consistent with diabetic retinopathy in the ob/ob mouse model of type 2 diabetes, to investigate whether features similar to those in human diabetic retinopathy were present. METHODS: Male and female wild-type (+/+), heterozygous (+/-) and homozygous (-/-) BTBR ob/ob mice were examined at 6, 10, 15 and 20 weeks of age. Animals were weighed and blood glucose was measured. TUNEL and brain-specific homeobox/POU domain protein 3A (BRN3A) markers were used to examine retinal ganglion cells. We used immunostaining (collagen IV and platelet endothelial cell adhesion molecule [PECAM]/CD31) to reveal retinal vessel degeneration. Spectral domain optical coherence tomography was used to reveal changes in the thickness and structure of the retinal layer. Vitreous fluorophotometry was used to investigate vascular permeability. A-waves, b-waves and oscillatory potentials were measured under photopic and scotopic conditions. Concanavalin A leucostasis and immunostaining with glial fibrillary acidic protein (GFAP) and ionised calcium-binding adapter molecule 1 (IBA-1) identified differences in inflammatory status. Paraffin sections and transmission electron microscopy were used to reveal changes in the thickness and structure of the retinal layer. RESULTS: Following the development of obesity and hyperglycaemia in 2-week-old and 3-week-old ob-/ob- mice, respectively (p < 0.001), early functional deficits (p < 0.001) and thinning of the inner retina (p < 0.001) were identified. Glial activation, leucostasis (p < 0.05) and a shift in microglia/macrophage phenotype were observed before microvascular degeneration (p < 0.05) and elevated vascular permeability occurred (p < 0.05). CONCLUSIONS/INTERPRETATION: The present characterisation of the development of diabetic retinopathy in the ob/ob mouse represents a platform that will enable the development of new therapies, particularly for the early stages of disease.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retina/metabolismo , Retina/patologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia
6.
Invest Ophthalmol Vis Sci ; 55(6): 3709-19, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24845632

RESUMO

PURPOSE: Characterization of a mouse model of spontaneous choroidal neovascularization (sCNV) and its effect on retinal architecture and function. METHODS: The sCNV mouse phenotype was characterized by using fundus photography, fluorescein angiography, confocal scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), ERG, immunostaining, biochemistry, and electron microscopy. A role for VEGF-A signaling in sCNV was investigated by using neutralizing antibodies and a role for macrophages explored by cell-depletion studies. RESULTS: The sCNV starts between postnatal day 10 and 15 (P10-P15), increasing in number and severity causing RPE disruption and dysfunction. Various morphological methods confirmed the choroidal origin and subretinal position of the angiogenic vessels. At approximately P25, vessels were present in the outer retina with instances of anastomosis of some sCNV lesions with the retinal vasculature. The number of CNV lesions was significantly decreased by systemic blockade of the VEGF-A pathway. Choroidal neovascularization size also was significantly modulated by reducing the number of lesion-associated macrophages. Later stages of sCNV were associated with edema, neuronal loss, and dysfunction. CONCLUSIONS: The sCNV mouse is a new model for the study of both early and late events associated with choroidal neovascularization. Pharmacological reduction in sCNV with VEGF-A antagonists and an anti-inflammatory strategy suggests the model may be useful for investigating novel targets for treating human ocular neovascular disease.


Assuntos
Corioide/irrigação sanguínea , Neovascularização de Coroide/metabolismo , Edema/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Corioide/ultraestrutura , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Edema/patologia , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Angiofluoresceinografia , Fundo de Olho , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Confocal , Microscopia Eletrônica , Oftalmoscopia , Fenótipo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiopatologia , Vasos Retinianos/metabolismo , Vasos Retinianos/ultraestrutura , Transdução de Sinais , Tomografia de Coerência Óptica
7.
Am J Pathol ; 182(4): 1379-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23416159

RESUMO

Vascular endothelial growth factor A (VEGF-A) is a validated therapeutic target in several angiogenic- and vascular permeability-related pathological conditions, including certain cancers and potentially blinding diseases, such as age-related macular degeneration and diabetic retinopathy. We and others have shown that VEGF-A also plays an important role in neuronal development and neuroprotection, including in the neural retina. Antagonism of VEGF-A function might therefore present a risk to neuronal survival as a significant adverse effect. Herein, we demonstrate that VEGF-A acts directly on retinal ganglion cells (RGCs) to promote survival. VEGF receptor-2 signaling via the phosphoinositide-3-kinase/Akt pathway was required for the survival response in isolated RGCs. These results were confirmed in animal models of staurosporine-induced RGC death and experimental hypertensive glaucoma. Importantly, we observed that VEGF-A blockade significantly exacerbated neuronal cell death in the hypertensive glaucoma model. Our findings highlight the need to better define the risks associated with use of VEGF-A antagonists in the ocular setting.


Assuntos
Glaucoma/tratamento farmacológico , Glaucoma/patologia , Fármacos Neuroprotetores/uso terapêutico , Retina/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Citoproteção/efeitos dos fármacos , Modelos Animais de Doenças , Glaucoma/enzimologia , Neuropilinas/metabolismo , Fármacos Neuroprotetores/farmacologia , Testes de Neutralização , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/enzimologia , Hipertensão Ocular/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/enzimologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/enzimologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Transdução de Sinais/efeitos dos fármacos , Testes de Toxicidade Aguda , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Neurochem Res ; 32(4-5): 751-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17191137

RESUMO

Within the central nervous system, tetrahydrobiopterin (BH4) is an essential cofactor for dopamine and serotonin synthesis. In addition, BH4 is now established to be an essential cofactor for all isoforms of nitric oxide synthase (NOS). Inborn errors of metabolism affecting BH4 availability are well documented and the clinical presentation can be attributed to a paucity of dopamine, serotonin, and nitric oxide (NO) generation. In this article, we have focussed upon the sensitivity of BH4 to oxidative catabolism and the observation that when BH4 is limiting some cellular sources of NOS may generate superoxide whilst other BH4 saturated NOS enzymes may be generating NO. Such a scenario could favor peroxynitrite generation. If peroxynitrite is not scavenged, e.g., by antioxidants such as reduced glutathione, irreversible damage to critical cellular enzymes could ensue. Such targets include components of the mitochondrial electron transport chain, alpha ketoglutarate dehydrogenase and possibly pyruvate dehydrogenase. Such a cascade of events is hypothesized, in this article, to occur in neurodegenerative conditions such as Parkinson's and Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Biopterinas/análogos & derivados , Doença de Parkinson/metabolismo , Doença de Alzheimer/patologia , Animais , Antioxidantes/metabolismo , Biopterinas/biossíntese , Biopterinas/metabolismo , Dopamina/biossíntese , Humanos , Erros Inatos do Metabolismo/metabolismo , Óxido Nítrico/metabolismo , Doença de Parkinson/patologia , Serotonina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA