RESUMO
Anaplastic thyroid cancer (ATC) is a clinically aggressive form of undifferentiated thyroid cancer with limited treatment options. Tumor-associated macrophages (TAMs) constitute over 50% of ATC-infiltrating cells, and their presence is associated with a poor prognosis. We have previously shown that paracrine signals released by ATC cells induced pro-tumor M2-like polarization of human monocytes. However, which soluble factors derived from ATC cells drive monocyte activation, are largely unknown. In this study we investigated the participation of transforming growth factor ß1 (TGFß1) on the phenotype of macrophage activation induced by ATC cell-derived conditioned media (CM). THP-1 cells exposed to CM derived from ATC cells and recombinant human TGFß1 induced M2-like macrophage polarization, showing high CD163 and Dectin1 expression. Moreover, we showed that TGFß1 induced the messenger RNA (mRNA) and protein expression of the transcription factors SNAIL and SLUG. Accordingly, increased TGFß1 secretion from ATC cells was confirmed by enzyme-linked immunosorbent assay (ELISA). Addition of SB431542, a TGFß receptor inhibitor, significantly decreased the Dectin1, CD163, SNAIL and SLUG expression stimulated by ATC cell-derived CM. We validated the clinical significance of the expression of TGFß ligands, their receptors, as well as SNAIL and SLUG in human ATC by analyzing public microarray datasets. We found that the expression of the main TGFß ligands, TGFß1 and TGFß3, along with their receptors, TGFR1 and TGFR2, as well as SLUG, was significantly higher in human ATC tissue samples than in normal thyroid tissues. Our findings indicate that ATC cell-secreted TGFß1 may play a key role in M2-like macrophage polarization of human monocytes and in the up-regulation of SNAIL and SLUG transcription factors. Thus, ours results uncovered a novel mechanism involved in the activation of TAMs by soluble factors released by ATC cells, which suggest potential therapeutic targets for ATC.
RESUMO
The thymus plays a crucial role in T cell differentiation, a complex process influenced by various factors such as antigens, the microenvironment and thymic architecture. The way the thymus resolves infections is critical, as chronic persistence of microbes or inflammatory mediators can obstruct the differentiation. Here, we illustrate that following inflammatory T helper 1 infectious processes like those caused by Candida albicans or Trypanosoma cruzi, single positive thymocytes adopt a mature phenotype. Further investigations focused on T. cruzi infection, reveal a substantial existence of CD44+ cells in both the cortical and medullary areas of the thymus at the onset of infection. This disturbance coincides with heightened interferon gamma (IFNγ) production by thymocytes and an increased cytotoxic capacity against T. cruzi-infected macrophages. Additionally, we observe a reduced exportation capacity in T. cruzi-infected mice. Some alterations can be reversed in IFNγ knockout mice (KO). Notably, the majority of these effects can be replicated by systemic expression of interleukin (IL)-12+IL-18, underlining the predominantly inflammatory rather than pathogen-specific nature of these phenomena. Understanding the mechanisms through which systemic inflammation disrupts normal T cell development, as well as subsequent T cell exportation to secondary lymphoid organs (SLO) is pivotal for comprehending susceptibility to diseases in different pathological scenarios.
Assuntos
Doença de Chagas , Citocinas , Camundongos Knockout , Células Th1 , Timo , Trypanosoma cruzi , Animais , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Doença de Chagas/metabolismo , Trypanosoma cruzi/imunologia , Camundongos , Timo/imunologia , Timo/patologia , Células Th1/imunologia , Citocinas/metabolismo , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos Endogâmicos C57BL , Inflamação/imunologia , Diferenciação CelularRESUMO
IL-17 immune responses in cancer are controversial, with both tumor-promoting and tumor-repressing effects observed. To clarify the role of IL-17 signaling in cancer progression, we used syngeneic tumor models from different tissue origins. We found that deficiencies in host IL-17RA or IL-17A/F expression had varying effects on the in vivo growth of different solid tumors including melanoma, sarcoma, lymphoma, and leukemia. In each tumor type, the absence of IL-17 led to changes in the expression of mediators associated with inflammation and metastasis in the tumor microenvironment. Furthermore, IL-17 signaling deficiencies in the hosts resulted in decreased anti-tumor CD8+ T cell immunity and caused tumor-specific changes in several lymphoid cell populations. Our findings were associated with distinct patterns of IL-17A/F cytokine and receptor subunit expression in the injected tumor cell lines. These patterns affected tumor cell responsiveness to IL-17 and downstream intracellular signaling, leading to divergent effects on cancer progression. Additionally, we identified IL-17RC as a critical determinant of the IL-17-mediated response in tumor cells and a potential biomarker for IL-17 signaling effects in tumor progression. Our study offers insight into the molecular mechanisms underlying IL-17 activities in cancer and lays the groundwork for developing personalized immunotherapies.
Assuntos
Neoplasias , Receptores de Interleucina-17 , Humanos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17 , Transdução de Sinais , Linfócitos T CD8-Positivos , Inflamação , Neoplasias/genéticaRESUMO
This work examines cellular immunity against SARS-CoV-2 in patients from Córdoba, Argentina, during two major waves characterized by different circulating viral variants and different social behavior. Using flow cytometry, we evaluated the main lymphocyte populations of peripheral blood from hospitalized patients with moderate and severe COVID-19 disease. Our results show disturbances in the cellular immune compartment, as previously reported in different cohorts worldwide. We observed an increased frequency of B cells and a significant decrease in the frequency of CD3+ T cells in COVID-19 patients compared to healthy donors (HD). We also found a reduction in Tregs, which was more pronounced in severe patients. During the first wave, the frequency of GZMB, CD107a, CD39, and PD-1-expressing conventional CD4+ T (T conv) cells was significantly higher in moderate and severe patients than in HD. During the second wave, only the GZMB+ T conv cells of moderate and severe patients increased significantly. In addition, these patients showed a decreased frequency in IL-2-producing T conv cells. Interestingly, we identified two subsets of circulating CD8+ T cells with low and high CD8 surface expression in both HD and COVID-19 patients. While the percentages of CD8hi and CD8lo T cells within the CD8+ population in HD are similar, a significant increase was observed in CD8lo T cell frequency in COVID-19 patients. CD8lo T cell populations from HD as well as from SARS-CoV-2 infected patients exhibited lower frequencies of the effector cytokine-producing cells, TNF, IL-2, and IFN-γ, than CD8hi T cells. Interestingly, the frequency of CD8lo T cells increased with disease severity, suggesting that this parameter could be a potential marker for disease progression. Indeed, the CD8hi/CD8lo index helped to significantly improve the patient's clinical stratification and disease outcome prediction. Our data support the addition of, at least, a CD8hi/CD8lo index into the panel of biomarkers commonly used in clinical labs, since its determination may be a useful tool with impact on the therapeutic management of the patients.
Assuntos
COVID-19 , Humanos , Linfócitos T CD8-Positivos , Interleucina-2/metabolismo , SARS-CoV-2 , Subpopulações de Linfócitos , Gravidade do PacienteRESUMO
Background: COVID-19 severity has been linked to an increased production of inflammatory mediators called "cytokine storm". Available data is mainly restricted to the first international outbreak and reports highly variable results. This study compares demographic and clinical features of patients with COVID-19 from Córdoba, Argentina, during the first two waves of the pandemic and analyzes association between comorbidities and disease outcome with the "cytokine storm", offering added value to the field. Methods: We investigated serum concentration of thirteen soluble mediators, including cytokines and chemokines, in hospitalized patients with moderate and severe COVID-19, without previous rheumatic and autoimmune diseases, from the central region of Argentina during the first and second infection waves. Samples from healthy controls were also assayed. Clinical and biochemical parameters were collected. Results: Comparison between the two first COVID-19 waves in Argentina highlighted that patients recruited during the second wave were younger and showed less concurrent comorbidities than those from the first outbreak. We also recognized particularities in the signatures of systemic cytokines and chemokines in patients from both infection waves. We determined that concurrent pre-existing comorbidities did not have contribution to serum concentration of systemic cytokines and chemokines in COVID-19 patients. We also identified immunological and biochemical parameters associated to inflammation which can be used as prognostic markers. Thus, IL-6 concentration, C reactive protein level and platelet count allowed to discriminate between death and discharge in patients hospitalized with severe COVID-19 only during the first but not the second wave. Conclusions: Our data provide information that deepens our understanding of COVID-19 pathogenesis linking demographic features of a COVID-19 cohort with cytokines and chemokines systemic concentration, presence of comorbidities and different disease outcomes. Altogether, our findings provide information not only at local level by delineating inflammatory/anti-inflammatory response of patients but also at international level addressing the impact of comorbidities and the infection wave in the variability of cytokine and chemokine production upon SARS-CoV-2 infection.
Assuntos
COVID-19 , Humanos , Citocinas/metabolismo , SARS-CoV-2/metabolismo , Argentina , Quimiocinas , Síndrome da Liberação de Citocina , PandemiasRESUMO
Introduction: Chagas disease causes a cardiac illness characterized by immunoinflammatory reactions leading to myocardial fibrosis and remodeling. The development of Chronic Chagas Cardiomyopathy (CCC) in some patients while others remain asymptomatic is not fully understood, but dysregulated inflammatory responses are implicated. The Aryl hydrocarbon receptor (AhR) plays a crucial role in regulating inflammation. Certain tryptophan (Trp) metabolites have been identified as AhR ligands with regulatory functions. Methods results and discussion: We investigated AhR expression, agonist response, ligand production, and AhR-dependent responses, such as IDO activation and regulatory T (Treg) cells induction, in two T. cruzi-infected mouse strains (B6 and Balb/c) showing different polymorphisms in AhR. Furthermore, we assessed the metabolic profile of Trp catabolites and AhR agonistic activity levels in plasma samples from patients with chronic Chagas disease (CCD) and healthy donors (HD) using a luciferase reporter assay and liquid chromatography-mass spectrophotometry (LC-MS) analysis. T. cruzi-infected B6 mice showed impaired AhR-dependent responses compared to Balb/c mice, including reduced IDO activity, kynurenine levels, Treg cell induction, CYP1A1 up-regulation, and AhR expression following agonist activation. Additionally, B6 mice exhibited no detectable AhR agonist activity in plasma and displayed lower CYP1A1 up-regulation and AhR expression upon agonist activation. Similarly, CCC patients had decreased AhR agonistic activity in plasma compared to HD patients and exhibited dysregulation in Trp metabolic pathways, resulting in altered plasma metabolite profiles. Notably, patients with severe CCC specifically showed increased N-acetylserotonin levels in their plasma. The methods and findings presented here contribute to a better understanding of CCC development mechanisms and may identify potential specific biomarkers for T. cruzi infection and the severity of associated heart disease. These insights could be valuable in designing new therapeutic strategies. Ultimately, this research aims to establish the AhR agonistic activity and Trp metabolic profile in plasma as an innovative, non-invasive predictor of prognosis for chronic Chagas disease.
Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Animais , Humanos , Camundongos , Doença de Chagas/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Triptofano/metabolismoRESUMO
Anaplastic thyroid cancer (ATC) is a clinically aggressive form of undifferentiated thyroid cancer with limited treatment options. Immunotherapy for patients with ATC remains challenging. Tumor-associated macrophages (TAMs) constitute over 50% of ATC-infiltrating cells, and their presence is associated with a poor prognosis. Consequently, the development of new therapies targeting immune checkpoints in TAMs is considered a promising therapeutic approach for ATC. We have previously shown that soluble factors secreted by ATC cells induced pro-tumor M2-like polarization of human monocytes by upregulating the levels of the inhibitory receptor TIM3. Here, we extended our observations on ATC-cell-induced xenograft tumors. We observed a large number of immune cells infiltrating the ATC xenograft tumors. Significantly, 24-28% of CD45+ immune cells were macrophages (CD11b+ F4/80+). We further showed that 40% of macrophages were polarized toward a M2-like phenotype, as assessed by CD206 expression and by a significant increase in the Arg1/iNOS (M2/M1) ratio. Additionally, we found that ATC xenograft tumors had levels of TIM3 expression when determined by RT-PCR and immunofluorescence assays. Interestingly, we detected the expression of TIM3 in macrophages in ATC tumors by flow cytometry assays. Furthermore, TIM3 expression correlated with macrophage marker expression in human ATC. Our studies show that TIM3 is a newly identified immune checkpoint in macrophages. Since TIM3 is known as a negative immune regulator, it should be considered as a promising immunotherapeutic target for ATC.
RESUMO
Chagas disease is an emerging global health problem; however, it remains neglected. Increased aortic stiffness (IAS), a predictor of cardiovascular events, has recently been reported in asymptomatic chronic Chagas patients. After vascular injury, smooth muscle cells (SMCs) can undergo alterations associated with phenotypic switch and transdifferentiation, promoting vascular remodeling and IAS. By studying different mouse aortic segments, we tested the hypothesis that Trypanosoma cruzi infection promotes vascular remodeling. Interestingly, the thoracic aorta was the most affected by the infection. Decreased expression of SMC markers and increased expression of proliferative markers were observed in the arteries of acutely infected mice. In acutely and chronically infected mice, we observed cells coexpressing SMC and macrophage (Mo) markers in the media and adventitia layers of the aorta, indicating that T. cruzi might induce cellular processes associated with SMC transdifferentiation into Mo-like cells or vice versa. In the adventitia, the Mo cell functional polarization was associated with an M2-like CD206+arginase-1+ phenotype despite the T. cruzi presence in the tissue. Only Mo-like cells in inflammatory foci were CD206+iNOS+. In addition to the disorganization of elastic fibers, we found thickening of the aortic layers during the acute and chronic phases of the disease. Our findings indicate that T. cruzi infection induces a vascular remodeling with SMC dedifferentiation and increased cell populations coexpressing α-SMA and Mo markers that could be associated with IAS promotion. These data highlight the importance of studying large vessel homeostasis in Chagas disease.
Assuntos
Doença de Chagas , Remodelação Vascular , Camundongos , Animais , Actinas/metabolismo , Macrófagos/metabolismo , Aorta/metabolismo , Biomarcadores , Músculo Liso/metabolismoRESUMO
Anaplastic thyroid cancer (ATC) is a highly aggressive type of thyroid cancer (TC). Currently, no effective target treatments are available that can improve overall survival, with ATC representing a major clinical challenge because of its remarkable lethality. Tumor-associated macrophages (TAMs) are the most evident cells in ATCs, and their high density is correlated with a poor prognosis. However, the mechanisms of how TAMs promote ATC progression remain poorly characterized. Here, we demonstrated that the treatment of human monocytes (THP-1 cells) with ATC cell-derived conditioned media (CM) promoted macrophage polarization, showing high levels of M2 markers. Furthermore, we found that STAT3 was activated, and this was correlated with an increased expression and secretion of the inflammatory cytokine interleukin-6. Remarkably, the M2-like macrophages obtained revealed tumor-promoting activity. A cytokine array analysis demonstrated that M2-like macrophage-derived CM contained high levels of TIM3, which is an important immune regulatory molecule. Consistently, TIM3 expression was up-regulated in THP-1 cells cultured with ATC cell-derived CM. Moreover, TIM3 blockade significantly reversed the polarization of THP-1 cells induced by ATC cell-secreted soluble factors. We validated the clinical significance of the TIM3 in human TC by analyzing public datasets and found that the expression of TIM3 and its ligand galectin 9 was significantly higher in human TC tissue samples than in normal thyroid tissues. Taken together, our findings identified a new mechanism by which TIM3 induces tumor-promoting M2-like macrophage polarization in TC. Furthermore, TIM3 interference might be a potential tool for treatment of patients with ATC.
RESUMO
Chagas cardiomyopathy is the consequence of a compromised electrical and mechanical cardiac function, with parasite persistence, unbalanced inflammation, and pathological tissue remodelling, being intricately related to myocardial aggression and impaired function. Recent studies have shown that Wnt signaling pathways play a critical role in the pathogenesis of cardiac and vascular diseases. In addition, we have reported that Trypanosoma cruzi infection activates Wnt signaling to promote intracellular replication of the parasites in macrophages, with the treatment of mice with IWP-L6 (an inhibitor of the O-acyl-transferase, PORCN, responsible for the post-translational modifications necessary for Wnt protein secretion) being able to diminish parasitemia and tissue parasitism. Here, we show that inhibition of Wnt signaling during the acute phase of T. cruzi infection controls the parasite replication, inhibits the development of parasite-prone and fibrosis-prone Th2-type immune response, and prevents the development of cardiac abnormalities characteristics of chronic Chagas disease. Our results suggest that the Wnt signaling pathway might be a potential target to prevent the development of T. cruzi-induced cardiomyopathy.
Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Aciltransferases , Animais , Imunidade , Proteínas de Membrana , Camundongos , Via de Sinalização WntRESUMO
Thyroid cancer is the most common endocrine malignancy. Although most thyroid cancer patients are successfully treated and have an excellent prognosis, a percentage of these patients will develop aggressive disease and, eventually, progress to anaplastic thyroid cancer. Since most patients with this type of aggressive thyroid carcinoma will die from the disease, new treatment strategies are urgently needed. Tumor cells live in a complex and dynamic tumor microenvironment composed of different types of stromal cells. Cancer-associated fibroblasts (CAFs) are one of the most important cell components in the tumor microenvironment of most solid tumors, including thyroid cancer. CAFs originate mainly from mesenchymal cells and resident fibroblasts that are activated and reprogrammed in response to paracrine factors and cytokines produced and released by tumor cells. Upon reprogramming, which is distinguished by the expression of different marker proteins, CAFs synthesize and secret soluble factors. The secretome of CAFs directly impacts different functions of tumor cells. This bi-directional interplay between CAFs and tumor cells within the tumor microenvironment ends up fostering tumor cancer progression. CAFs are therefore key regulators of tumor progression and represent an under-explored therapeutic target in thyroid cancer.
Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma Anaplásico da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Microambiente Tumoral , Fibroblastos , Humanos , Comunicação Parácrina , Células Estromais , Neoplasias da Glândula Tireoide/patologiaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Thyroid cancer is the most common endocrine malignancy. Anaplastic thyroid cancer is one of the most aggressive thyroid tumors. It is known that activation of oncogenes and/or inactivation of tumor suppressor genes in tumor cells promotes tumorigenesis. The microenvironment of the tumor also plays a key role on cancer development and progression in a variety of tumors. However, the mechanisms by which tumor-stroma crosstalk in thyroid cancer remains poorly characterized. In this study we aimed to understand how interactions between fibroblasts and anaplastic thyroid cancer cells contribute to thyroid carcinogenesis. We first characterized the phenotypic changes of human fibroblasts in vitro through co-cultures by using transwells as well as by using anaplastic thyroid cancer cells-derived conditioned media. We found that fibroblasts acquired an activated phenotype or also known as cancer-associated fibroblast phenotype after being in contact with soluble factors secreted from anaplastic thyroid cancer cells, compared to the fibroblasts in mono-cultures. All the changes were partly mediated through Src/Akt activation. Treatment with the antioxidant N-acetyl-cysteine reversed in part the metabolic phenotype of activated fibroblasts. Remarkably, conditioned media obtained from these activated fibroblasts promoted cell proliferation and invasion of follicular thyroid cancer cell line, FTC-133 cells. Thus, a reciprocal and dynamic interaction exists between tumor and stromal cells, which results in the promotion of thyroid tumorigenesis. The present studies have advanced the understanding of the molecular basis of tumor-stroma communications, enabling identification and targeting of tumor-supportive mechanisms for novel treatment modalities.
Assuntos
Adenocarcinoma Folicular/patologia , Fibroblastos Associados a Câncer/metabolismo , Células Estromais/patologia , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Carcinogênese/patologia , Comunicação Celular , Técnicas de Cultura de Células , Desdiferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Progressão da Doença , Humanos , Invasividade Neoplásica/patologia , Comunicação Parácrina , Glândula Tireoide/citologia , Glândula Tireoide/patologia , Microambiente TumoralRESUMO
BACKGROUND/AIMS: Although a cross-talk between immune and endocrine systems has been well established, the precise pathways by which these signals co-regulate pro- and antiinflammatory responses on antigen-presenting cells remain poorly understood. In this work we investigated the mechanisms by which triiodothyronine (T3) controls T cell activity via dendritic cell (DC) modulation. METHODS: DCs from wild-type (WT) and IL-6-deficient mice were pulsed with T3. Cytokine production and programmed death protein ligands (PD-L) 1 and 2 expression were assayed by flow cytometry and ELISA. Interferon-regulatory factor-4 (IRF4) expression was evaluated by RT-qPCR and flow cytometry. The ability of DCs to stimulate allogenic splenocytes was assessed in a mixed lymphocyte reaction and the different profile markers were analyzed by flow cytometry and ELISA. For in vivo experiments, DCs treated with ovalbumin and T3 were injected into OTII mice. Proliferation, cytokine production, frequency of FoxP3+ regulatory T (Treg) cells and PD-1+ cells were determined by MTT assay, ELISA and flow cytometry, respectively. RESULTS: T3 endows DCs with pro-inflammatory potential capable of generating IL-17-dominant responses and down-modulating expression of PD-L1 and 2. T3-stimulated WT-DCs increased the proportion of IL-17-producing splenocytes, an effect which was eliminated when splenocytes were incubated with T3-treated DCs derived from IL-6-deficient mice. Enhanced IL-17 expression was recorded in both, CD4- and CD4+ populations and involved the IRF-4 pathway. Particularly, γδ-T cells but not natural killer (NK), NKT, B lymphocytes nor CD8+ T cells were the major source of IL-17-production from CD4- cells. Moreover, T3-conditioned DCs promoted a decrease of the FoxP3+ Treg population. Furthermore, T3 down-modulated PD-1 expression on CD4- cells thereby limiting inhibitory signals driven by this co-inhibitory pathway. Thus, T3 acts at the DC level to drive proinflammatory responses in vitro. Accordingly, we found that T3 induces IL-17 and IFNγ-dominant antigen-specific responses in vivo. CONCLUSION: These results emphasize the relevance of T3 as an additional immune-endocrine checkpoint and a novel therapeutic target to modulate IL-17-mediated pro-inflammatory responses.
Assuntos
Células Dendríticas/imunologia , Interleucina-17/imunologia , Transdução de Sinais/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Dendríticas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Interleucina-17/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Camundongos , Camundongos Knockout , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Transdução de Sinais/imunologiaRESUMO
During the acute phase of Trypanosoma cruzi infection, macrophages can act as host cells for the parasites as well as effector cells in the early anti-parasitic immune response. Thus, the targeting of specific signaling pathways could modulate macrophages response to restrict parasite replication and instruct an appropriate adaptive response. Recently, it has become evident that Wnt signaling has immunomodulatory functions during inflammation and infection. Here, we tested the hypothesis that during T. cruzi infection, the activation of Wnt signaling pathway in macrophages plays a role in modulating the inflammatory/tolerogenic response and therefore regulating the control of parasite replication. In this report, we show that early after T. cruzi infection of bone marrow-derived macrophages (BMM), ß-catenin was activated and Wnt3a, Wnt5a, and some Frizzled receptors as well as Wnt/ß-catenin pathway's target genes were upregulated, with Wnt proteins signaling sustaining the activation of Wnt/ß-catenin pathway and then activating the Wnt/Ca+2 pathway. Wnt signaling pathway activation was critical to sustain the parasite's replication in BMM; since the treatments with specific inhibitors of ß-catenin transcriptional activation or Wnt proteins secretion limited the parasite replication. Mechanistically, inhibition of Wnt signaling pathway armed BMM to fight against T. cruzi by inducing the production of pro-inflammatory cytokines and indoleamine 2,3-dioxygenase activity and by downregulating arginase activity. Likewise, in vivo pharmacological inhibition of the Wnts' interaction with its receptors controlled the parasite replication and improved the survival of lethally infected mice. It is well established that T. cruzi infection activates a plethora of signaling pathways that ultimately regulate immune mediators to determine the modulation of a defined set of effector functions in macrophages. In this study, we have revealed a new signaling pathway that is activated by the interaction between protozoan parasites and host innate immunity, establishing a new conceptual framework for the development of new therapies.
Assuntos
Doença de Chagas/imunologia , Interações Hospedeiro-Parasita/imunologia , Macrófagos/imunologia , Trypanosoma cruzi/imunologia , Via de Sinalização Wnt/imunologia , Animais , Linhagem Celular , Doença de Chagas/tratamento farmacológico , Doença de Chagas/mortalidade , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Humanos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt/efeitos dos fármacosRESUMO
Pixuna virus (PIXV) is an enzootic member of the Venezuelan Equine Encephalitis Virus complex and belongs to the New World cluster of alphaviruses. Herein we explore the role of the cellular cytoskeleton during PIXV replication. We first identified that PIXV undergoes an eclipse phase consisting of 4 h followed by 20 h of an exponential phase in Vero cells. The infected cells showed morphological changes due to structural modifications in actin microfilaments (MFs) and microtubules (MTs). Cytoskeleton-binding agents, that alter the architecture and dynamics of MFs and MTs, were used to study the role of cytoskeleton on PIXV replication. The virus production was significantly affected (p < 0.05) after treatment with paclitaxel or nocodazole due to changes in the MTs network. Interestingly, disassembly of MFs with cytochalasin D, at early stage of PIXV replication cycle, significantly increased the virus yields in the extracellular medium (p < 0.005). Furthermore, the stabilization of actin network with jasplakinolide had no effect on virus yields. Our results demonstrate that PIXV relies not only on intact MTs for the efficient production of virus, but also on a dynamic actin network during the early steps of viral replication.
Assuntos
Alphavirus/fisiologia , Citoesqueleto/virologia , Microtúbulos/virologia , Replicação Viral , Alphavirus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Citocalasina D/farmacologia , Citoesqueleto/efeitos dos fármacos , Depsipeptídeos/farmacologia , Interações Hospedeiro-Patógeno , Microtúbulos/efeitos dos fármacos , Nocodazol/farmacologia , Paclitaxel/farmacologia , Fatores de Tempo , Moduladores de Tubulina/farmacologia , Células VeroRESUMO
Lipopolysaccharide (LPS), a glycolipid found in the cell wall of Gram-negative bacteria, exerts pleiotropic biological effects in different cell types. LPS is mainly recognized by the Toll-like receptor (TLR) 4/MD2/Cluster of differentiation 14 complex (CD14). We previously demonstrated that LPS produced a direct action on thyroid cells, including up-regulation of thyroglobulin gene expression. This work aimed to study further the effect of LPS on thyroid function and to elucidate the mechanism by which LPS is recognized by the thyroid cell. We could detect the transcript and protein expression of TLR4, MD2, and CD14 in thyroid cells, and that these proteins are localized at the plasma membrane. The sodium iodide symporter (NIS) is the transporter involved in the iodide uptake, the first step in thyroid hormonogenesis. We demonstrated that LPS increases the TSH-induced iodide uptake and NIS protein expression. The LPS agonist lipid A reproduced LPS effect, whereas the LPS antagonist, polymyxin B, abrogated it. By the use of anti-TLR4 blocking antibodies and the transient expression of TLR4 dominant-negative forms, we evidenced the involvement of TLR4 in the LPS action. The enrichment of TLR4 expressing Fisher rat thyroid cell line-5 (FRTL-5) cells confirmed that TLR4 confers LPS responsiveness to thyroid cells. In conclusion, we revealed for the first time that all the components of the LPS receptor complex are expressed in thyroid cells. Evidence that the effects of LPS on rodent thyroid function involve TLR4-induced signaling was obtained. The fact that thyroid cells are able to recognize and respond to LPS supports a role of the endotoxin as a potential modifier of thyroid function.
Assuntos
Lipopolissacarídeos/farmacologia , Glândula Tireoide/fisiologia , Receptor 4 Toll-Like/genética , Animais , Linhagem Celular , Membrana Celular/fisiologia , Citometria de Fluxo , Iodetos/metabolismo , Camundongos , RNA/genética , RNA/isolamento & purificação , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , TransfecçãoRESUMO
This study assessed whether the in vitro effect of testosterone on the proliferative response of mononuclear cells to myelin basic protein (MBP) could be mediated by nitric oxide (NO). Testosterone but not cholesterol supplementation specifically suppressed the proliferative response of rat mononuclear cells to MBP and in parallel increased the NO level. NG-monomethyl 1-l-arginine, an inhibitor of NO synthesis, reverted the suppression of the testosterone-induced proliferative response to MBP. These results indicate that changes in the production of NO by testosterone are able to alter the specific T cell proliferation induced by the encephalitogenic MBP and in this way; it could be one of the molecular mechanisms that modulate the development of experimental autoimmune encephalomyelitis (EAE).
Assuntos
Proliferação de Células/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Proteína Básica da Mielina/imunologia , Óxido Nítrico/metabolismo , Testosterona/farmacologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Inibidores Enzimáticos/farmacologia , Leucócitos Mononucleares/imunologia , Masculino , Ratos , Ratos Wistar , ômega-N-Metilarginina/farmacologiaRESUMO
OBJECTIVE: Nitric oxide (NO) induces morphological and functional alterations in primary cultured thyroid cells. The aim of this paper was to analyze the direct influence of a long-term exposition to NO on parameters of thyroid hormone biosynthesis in FRTL-5 cells. DESIGN: Cells were treated with the NO donor sodium nitroprusside (SNP) for 24-72 h. MAIN OUTCOME: SNP (50-500 micromol/L) reduced iodide uptake in a concentration-dependent manner. The inhibition of iodide uptake increased progressively with time and matched nitrite accumulation. SNP inhibited thyroperoxidase (TPO) and thyroglobulin (TG) mRNA expression in a concentration-dependent manner. SNP enhanced 3',5'-cyclic guanosine monophosphate (cGMP) production. 3',5'-cyclic adenosine phosphate (cAMP) generation was reduced by a high SNP concentration after 48 h. 8-Bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP), a cGMP analog, inhibited iodide uptake as well as TPO and TG mRNA expression. The cGMP-dependent protein kinase (cGK) inhibitor KT-5823 reversed SNP or 8-Br-cGMP-inhibited iodide uptake. Thyroid-stimulating hormone pretreatment for 24-48 h prevented SNP-reduced iodide uptake although nitrite levels remained unaffected. CONCLUSION: These findings favor a long-term inhibitory role of the NO/cGMP pathway on parameters of thyroid hormone biosynthesis. A novel property of NO to inhibit TPO and TG mRNA expression is supported. The NO action on iodide uptake could involve cGK mediation. The long-term inhibition of steps of thyroid hormonogenesis by NO could be of interest in thyroid pathophysiology.
Assuntos
Iodeto Peroxidase/genética , Iodetos/farmacocinética , Transdução de Sinais/fisiologia , Tireoglobulina/genética , Glândula Tireoide/metabolismo , Tireotropina/metabolismo , Animais , Carbazóis/farmacologia , Linhagem Celular , AMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Glândula Tireoide/citologia , Hormônios Tireóideos/biossíntese , Tireotropina/farmacologiaRESUMO
Nitric oxide (NO) is a free radical that mediates a wide array of cell functions. It is generated from l-arginine by NO-synthase (NOS). Expression of NOS isoforms has been demonstrated in thyroid cells. Previous reports indicated that NO donors induce dedifferentiation in thyrocytes. However, the functional significance of endogenous thyrocyte-produced NO has not been explored. This work aimed to study the influence of endogenous NO on parameters of thyroid cell function and differentiation in FRTL-5 cells. We observed that treatment with the NOS inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME), increased the TSH-stimulated iodide uptake. The TSH-induced sodium iodide symporter (NIS) and thyroglobulin (TG) mRNA expressions were increased after incubation with L-NAME. In transient transfection assays, TSH-stimulated transcriptional activities of NIS and TG promoters were increased by L-NAME. An increment of the TSH-stimulated cell proliferation was observed after NOS inhibition. Similar results were obtained when the action of another NOS inhibitor, N(g)-monomethyl-L-arginine, was analysed for most of these studies. The production of NO, which was not detectable in basal conditions, was increased by TSH. Our data provide strong evidence that endogenous NO could act as a negative signal for TSH-stimulated iodide uptake and thyroid-specific gene expression as well as proliferation in thyrocytes. These findings reveal a possible new inhibitory pathway in the regulation of thyroid cell function.