Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255465

RESUMO

Herein, thermodynamic assessment is proposed to screen suitable precursors for the solid-state synthesis of manganese ferrite, by mechanosynthesis at room temperature or by subsequent calcination at relatively low temperatures, and the main findings are validated by experimental results for the representative precursor mixtures MnO + FeO3, MnO2 + Fe2O3, and MnO2 +2FeCO3. Thermodynamic guidelines are provided for the synthesis of manganese ferrite from (i) oxide and/or metallic precursors; (ii) carbonate + carbonate or carbonate + oxide powder mixtures; (iii) other precursors. It is also shown that synthesis from metallic precursors (Mn + 2Fe) requires a controlled oxygen supply in limited redox conditions, which is hardly achieved by reducing gases H2/H2O or CO/CO2. Oxide mixtures with an overall oxygen balance, such as MnO + Fe2O3, act as self-redox buffers and offer prospects for mechanosynthesis for a sufficient time (>9 h) at room temperature. On the contrary, the fully oxidised oxide mixture MnO2 + Fe2O3 requires partial reduction, which prevents synthesis at room temperature and requires subsequent calcination at temperatures above 1100 °C in air or in nominally inert atmospheres above 750 °C. Oxide + carbonate mixtures, such as MnO2 +2FeCO3, also yield suitable oxygen balance by the decomposition of the carbonate precursor and offer prospects for mechanosynthesis at room temperature, and residual fractions of reactants could be converted by firing at relatively low temperatures (≥650 °C).

2.
Materials (Basel) ; 16(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138780

RESUMO

Perovskite-type Sr(Ti,V)O3-δ ceramics are promising anode materials for natural gas- and biogas-fueled solid oxide fuel cells, but the instability of these phases under oxidizing conditions complicates their practical application. The present work explores approaches to the fabrication of strontium titanate-vanadate electrodes from oxidized precursors. Porous ceramics with the nominal composition SrTi1-yVyOz (y = 0.1-0.3) were prepared in air via a solid state reaction route. Thermal processing at temperatures not exceeding 1100 °C yielded composite ceramics comprising perovskite-type SrTiO3, pyrovanadate Sr2V2O7 and orthovanadate Sr3(VO4)2 phases, while increasing firing temperatures to 1250-1440 °C enabled the formation of SrTi1-yVyO3 perovskites. Vanadium was found to substitute into the titanium sublattice predominantly as V4+, even under oxidizing conditions at elevated temperatures. Both perovskite and composite oxidized ceramics exhibit moderate thermal expansion coefficients in air, 11.1-12.1 ppm/K at 30-1000 °C, and insignificant dimensional changes induced by reduction in a 10%H2-N2 atmosphere. The electrical conductivity of reduced perovskite samples remains comparatively low, ~10-1 S/cm at 900 °C, whereas the transformation of oxidized vanadate phases into high-conducting SrVO3-δ perovskites upon reduction results in enhancement in conductivity, which reaches ~3 S/cm at 900 °C in porous composite ceramics with nominal composition SrTi0.7V0.3Oz. The electrical performance of the composite is expected to be further improved by optimization of the processing route and microstructure to facilitate the reduction of the oxidized precursor and attain better percolation of the SrVO3 phase.

3.
Materials (Basel) ; 15(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35207979

RESUMO

The alkaline electrolytic production of iron is gaining interest due to the absence of CO2 emissions and significantly lower electrical energy consumption when compared with traditional steelmaking. The possibility of using an iron-bearing pseudobrookite mineral, Fe2TiO5, is explored for the first time as an alternative feedstock for the electrochemical reduction process. To assess relevant impacts of the presence of titanium, similar electroreduction processes were also performed for Fe2TiO5·Fe2O3 and Fe2O3. The electroreduction was attempted using dense and porous ceramic cathodes. Potentiostatic studies at the cathodic potentials of -1.15--1.30 V vs. an Hg|HgO|NaOH reference electrode and a galvanostatic approach at 1 A/cm2 were used together with electroreduction from ceramic suspensions, obtained by grinding the porous ceramics. The complete electroreduction to Fe0 was only possible at high cathodic polarizations (-1.30 V), compromising the current efficiencies of the electrochemical process due to the hydrogen evolution reaction impact. Microstructural evolution and phase composition studies are discussed, providing trends on the role of titanium and corresponding electrochemical mechanisms. Although the obtained results suggest that pseudobrookite is not a feasible material to be used alone as feedstock for the electrolytic iron production, it can be considered with other iron oxide materials and/or ores to promote electroreduction.

4.
Materials (Basel) ; 14(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573317

RESUMO

Manganese-substituted 5 mol.% yttria-stabilized zirconia (5YSZ) was explored as a prospective material for protective interlayers between electrolyte and oxygen electrodes in reversible solid oxide fuel/electrolysis cells. [(ZrO2)0.95(Y2O3)0.05]1-x[MnOy]x (x = 0.05, 0.10 and 0.15) ceramics with cubic fluorite structure were sintered in air at 1600 °C. The characterization included X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetry and dilatometry in controlled atmospheres, electrical conductivity measurements, and determination of oxygen-ion transference numbers by the electromotive force (EMF) technique. Mn-substituted 5YSZ solid solutions exhibit variable oxygen nonstoichiometry with manganese cations in a mixed 2+/3+ oxidation state under oxidizing conditions. Substitution by manganese gradually increases the extent of oxygen content variation on thermal/redox cycling, chemical contribution to thermal expansion and dimensional changes on reduction. It also deteriorates oxygen-ionic conductivity and improves p-type electronic conductivity under oxidizing conditions, leading to a gradual transformation from predominantly ionic to prevailing electronic transport with increasing x. Mn2+/3+→Mn2+ transformation under reducing atmospheres is accompanied by the suppression of electronic transport and an increase in ionic conductivity. All Mn-substituted 5YSZ ceramics are solid electrolytes under reducing conditions. Prolonged treatments in reducing atmospheres, however, promote microstructural changes at the surface of bulk ceramics and Mn exsolution. Mn-substituted 5YSZ with 0.05 ≤ x < 0.10 is considered the most suitable for the interlayer application, due to the best combination of relevant factors, including oxygen content variations, levels of ionic/electronic conductivity and thermochemical expansion.

5.
Materials (Basel) ; 13(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120813

RESUMO

This paper reports a novel composite-based processing route for improving the electrical performance of Ca3Co4O9 thermoelectric (TE) ceramics. The approach involves the addition of metallic Co, acting as a pore filler on oxidation, and considers two simple sintering schemes. The (1-x)Ca3Co4O9/xCo composites (x = 0%, 3%, 6% and 9% vol.) have been prepared through a modified Pechini method, followed by one- and two-stage sintering, to produce low-density (one-stage, 1ST) and high-density (two-stage, 2ST) ceramic samples. Their high-temperature TE properties, namely the electrical conductivity (σ), Seebeck coefficient (α) and power factor (PF), were investigated between 475 and 975 K, in air flow, and related to their respective phase composition, morphology and microstructure. For the 1ST case, the porous samples (56%-61% of ρth) reached maximum PF values of around 210 and 140 µWm-1·K-2 for the 3% and 6% vol. Co-added samples, respectively, being around two and 1.3 times higher than those of the pure Ca3Co4O9 matrix. Although 2ST sintering resulted in rather dense samples (80% of ρth), the efficiency of the proposed approach, in this case, was limited by the complex phase composition of the corresponding ceramics, impeding the electronic transport and resulting in an electrical performance below that measured for the Ca3Co4O9 matrix (224 µWm-1·K-2 at 975K).

6.
Materials (Basel) ; 13(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046064

RESUMO

This work aims at the preparation of multifunctional titania-based photocatalysts with inherent capabilities for thermal co-activation and stabilisation of anatase polymorph, by designing the phase composition and microstructure of rutile-silicon carbide mixture. The processing involved a conventional solid state route, including partial pre-reduction of rutile by SiC in inert Ar atmosphere, followed by post-oxidation in air. The impacts of processing conditions on the phase composition and photocatalytic activity were evaluated using Taguchi planning. The XRD studies confirmed the presence of rutile/anatase mixtures in the post-oxidised samples. The results emphasise that pre-reduction and post-oxidation temperatures are critical in defining the phase composition, while post-oxidation time is relevant for the photocatalytic performance. Microstructural studies revealed the formation of core-shell particles, which can suppress the photocatalytic activity. The highest apparent reaction rate of the photodegradation of methylene blue was observed for the sample pre-reduced in Ar at 1300 °C for 5 h and then calcined in air at 400 °C for 25 h. Though its performance was ~1.6-times lower than that for the same amount of nanostructured industrial P25 photocatalyst, it was achieved in the material possessing 2-3 times lower surface area and containing ~50 mol% of SiO2 and SiC, thus demonstrating excellent prospects for further improvements.

7.
Materials (Basel) ; 12(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31248011

RESUMO

Zinc oxide (ZnO) has being recognised as a potentially interesting thermoelectric material, allowing flexible tuning of the electrical properties by donor doping. This work focuses on the assessment of tantalum doping effects on the relevant structural, microstructural, optical and thermoelectric properties of ZnO. Processing of the samples with a nominal composition Zn1-xTaxO by conventional solid-state route results in limited solubility of Ta in the wurtzite structure. Electronic doping is accompanied by the formation of other defects and dislocations as a compensation mechanism and simultaneous segregation of ZnTa2O6 at the grain boundaries. Highly defective structure and partial blocking of the grain boundaries suppress the electrical transport, while the evolution of Seebeck coefficient and band gap suggest that the charge carrier concentration continuously increases from x = 0 to 0.008. Thermal conductivity is almost not affected by the tantalum content. The highest ZT~0.07 at 1175 K observed for Zn0.998Ta0.002O is mainly provided by high Seebeck coefficient (-464 V/K) along with a moderate electrical conductivity of ~13 S/cm. The results suggest that tantalum may represent a suitable dopant for thermoelectric zinc oxide, but this requires the application of specific processing methods and compositional design to enhance the solubility of Ta in wurtzite lattice.

8.
ChemSusChem ; 12(1): 240-251, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30281934

RESUMO

The applicability of perovskite-type SrVO3-δ in high-temperature electrochemical energy conversion technology is hampered by the limited stability domain of the perovskite phase. The aim of the present work was to find a compromise between the phase stability and electrical performance by designing solid solutions in the SrVO3 -SrTiO3 system. Increasing titanium content in SrV1-y Tiy O3-δ (y=0-0.9) perovskites is demonstrated to result in a gradual shift of the upper-p(O2 ) phase stability boundary toward oxidizing conditions: from ≈10-15  bar at 900 °C for undoped SrVO3-δ to ≈10-11 -10-5  bar for y=0.3-0.5. Although the improvement in the phase stability is accompanied by a decrease in electrical conductivity, the conductivities of SrV0.7 Ti0.3 O3-δ and SrV0.5 Ti0.5 O3-δ at 900 °C remain as high as 80 and 20 S cm-1 , respectively, and is essentially independent of p(O2 ) within the phase-stability domain. Combined XRD, thermogravimetric analysis, and electrical studies revealed very sluggish kinetics of oxidation of SrV0.5 Ti0.5 O3-δ ceramics under inert gas conditions and a nearly reversible behavior after exposure to an inert atmosphere at elevated temperatures. Substitution by titanium in the SrV1-y Tiy O3-δ system results also in a decrease of oxygen deficiency in perovskite lattice and a favorable suppression of thermochemical expansion. Variations of oxygen nonstoichiometry and electrical properties in the SrV1-y Tiy O3-δ series are discussed in combination with the simulated defect chemistry of solid solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...