Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 97(4): 1113-1131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36864359

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are omnipresent and have been shown to induce a wide range of adverse health effects, including hepatotoxicity, developmental toxicity, and immunotoxicity. The aim of the present work was to assess whether human HepaRG liver cells can be used to obtain insight into differences in hepatotoxic potencies of a series of PFASs. Therefore, the effects of 18 PFASs on cellular triglyceride accumulation (AdipoRed assay) and gene expression (DNA microarray for PFOS and RT-qPCR for all 18 PFASs) were studied in HepaRG cells. BMDExpress analysis of the PFOS microarray data indicated that various cellular processes were affected at the gene expression level. From these data, ten genes were selected to assess the concentration-effect relationship of all 18 PFASs using RT-qPCR analysis. The AdipoRed data and the RT-qPCR data were used for the derivation of in vitro relative potencies using PROAST analysis. In vitro relative potency factors (RPFs) could be obtained for 8 PFASs (including index chemical PFOA) based on the AdipoRed data, whereas for the selected genes, in vitro RPFs could be obtained for 11-18 PFASs (including index chemical PFOA). For the readout OAT5 expression, in vitro RPFs were obtained for all PFASs. In vitro RPFs were found to correlate in general well with each other (Spearman correlation) except for the PPAR target genes ANGPTL4 and PDK4. Comparison of in vitro RPFs with RPFs obtained from in vivo studies in rats indicate that best correlations (Spearman correlation) were obtained for in vitro RPFs based on OAT5 and CXCL10 expression changes and external in vivo RPFs. HFPO-TA was found to be the most potent PFAS tested, being around tenfold more potent than PFOA. Altogether, it may be concluded that the HepaRG model may provide relevant data to provide insight into which PFASs are relevant regarding their hepatotoxic effects and that it can be applied as a screening tool to prioritize other PFASs for further hazard and risk assessment.


Assuntos
Ácidos Alcanossulfônicos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fluorocarbonos , Humanos , Animais , Ratos , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Hepatócitos , Fígado , Expressão Gênica
2.
Food Chem Toxicol ; 172: 113559, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535450

RESUMO

PER: and polyfluoroalkyl substances (PFASs) have been associated with increased blood lipids in humans. Perfluorooctanoic acid (PFOA) has been also linked with elevated alanine transferase (ALT) serum levels in humans, and in rodents the liver is a main target organ for many PFASs. With the focus on New Approach Methodologies, the chronic oral equivalent effect doses were calculated for PFOA, PFNA (perfluorononanoic acid), PFHxS (perfluorohexanesulfonic acid) and PFOS (perfluorooctane sulfonic acid) based on in vitro effects measured in the HepaRG cell line. Selected in vitro readouts were considered biomarkers for lipid disturbances and hepatotoxicity. Concentration-response data obtained from HepaRG cells on triglyceride (TG) accumulation and expression changes of 12 selected genes (some involved in cholesterol homeostasis) were converted into corresponding human dose-response data, using physiologically based kinetic (PBK) model-facilitated reverse dosimetry. Next to this, the biokinetics of the chemicals were studied in the cell system. The current European dietary PFASs exposure overlaps with the calculated oral equivalent effect doses, indicating that the latter may lead to interference with hepatic gene expression and lipid metabolism. These findings illustrate an in vitro-in silico methodology, which can be applied for more PFASs, to select those that should be prioritized for further hazard characterization.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Humanos , Caprilatos/toxicidade , Lipídeos , Fluorocarbonos/toxicidade
3.
Regul Toxicol Pharmacol ; 136: 105267, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36367522

RESUMO

Toxicology is moving away from animal testing towards in vitro tools to assess chemical safety. This new testing framework requires a quantitative method, i.e. kinetic modelling, which extrapolates effective concentrations in vitro to a bioequivalent human dose in vivo and which can be applied on "high throughput screening" of a wide variety of chemicals. Generic physiologically based kinetic (PBK) models help account for the role of toxicokinetics in setting human toxic exposure levels. Furthermore these models may be parameterized only on in silico QSARs and in vitro metabolism assays, thereby circumventing the use of in vivo toxicokinetics for this purpose. Though several such models exist their applicability domains have yet to be comprehensively assessed. This study extends previous evaluations of the PBK model IndusChemFate and compares it with its more complex biological complement ("TNO Model"). Both models were evaluated with a broad span of chemicals, varying regarding physicochemical properties. The results reveal that the "simpler" performed best, illustrating that IndusChemFate can be a useful first-tier for simulating toxicokinetics based on QSARs and in vitro parameters. Finally, proper quantitative in vitro to in vivo extrapolation conditions were illustrated starting with acetaminophen induced in vitro cytotoxicity in human HepaRG cells.


Assuntos
Modelos Biológicos , Relação Quantitativa Estrutura-Atividade , Animais , Humanos , Cinética , Toxicocinética , Medição de Risco/métodos
4.
Arch Toxicol ; 96(12): 3407-3419, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063173

RESUMO

With an increasing need to incorporate new approach methodologies (NAMs) in chemical risk assessment and the concomitant need to phase out animal testing, the interpretation of in vitro assay readouts for quantitative hazard characterisation becomes more important. Physiologically based kinetic (PBK) models, which simulate the fate of chemicals in tissues of the body, play an essential role in extrapolating in vitro effect concentrations to in vivo bioequivalent exposures. As PBK-based testing approaches evolve, it will become essential to standardise PBK modelling approaches towards a consensus approach that can be used in quantitative in vitro-to-in vivo extrapolation (QIVIVE) studies for regulatory chemical risk assessment based on in vitro assays. Based on results of an ECETOC expert workshop, steps are recommended that can improve regulatory adoption: (1) define context and implementation, taking into consideration model complexity for building fit-for-purpose PBK models, (2) harmonise physiological input parameters and their distribution and define criteria for quality chemical-specific parameters, especially in the absence of in vivo data, (3) apply Good Modelling Practices (GMP) to achieve transparency and design a stepwise approach for PBK model development for risk assessors, (4) evaluate model predictions using alternatives to in vivo PK data including read-across approaches, (5) use case studies to facilitate discussions between modellers and regulators of chemical risk assessment. Proof-of-concepts of generic PBK modelling approaches are published in the scientific literature at an increasing rate. Working on the previously proposed steps is, therefore, needed to gain confidence in PBK modelling approaches for regulatory use.


Assuntos
Modelos Biológicos , Animais , Cinética , Medição de Risco/métodos
6.
Toxicology ; 465: 153060, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34871708

RESUMO

With the increasing application of cell culture models as primary tools for predicting chemical safety, the quantitative extrapolation of the effective dose from in vitro to in vivo (QIVIVE) is of increasing importance. For developmental toxicity this requires scaling the in vitro observed dose-response characteristics to in vivo fetal exposure, while integrating maternal in vivo kinetics during pregnancy, in particular transplacental transfer. Here the transfer of substances across the placental barrier, has been studied using the in vitro BeWo cell assay and six embryotoxic compounds of different kinetic complexity. The BeWo assay results were incorporated in an existing generic Physiologically Based Kinetic (PBK) model which for this purpose was extended with rat pregnancy. Finally, as a "proof of principle", the BeWo PBK model was used to perform a QIVIVE based on developmental toxicity as observed in various different in vitro toxicity assays. The BeWo results illustrated different transport profiles of the chemicals across the BeWo monolayer, allocating the substances into two distinct groups: the 'quickly-transported' and the 'slowly-transported'. BeWo PBK exposure simulations during gestation were compared to experimentally measured maternal blood and fetal concentrations and a reverse dosimetry approach was applied to translate in vitro observed embryotoxicity into equivalent in vivo dose-response curves. This approach allowed for a direct comparison of the in vitro dose-response characteristics as observed in the Whole Embryo Culture (WEC), and the Embryonic Stem Cell test (cardiac:ESTc and neural:ESTn) with in vivo rat developmental toxicity data. Overall, the in vitro to in vivo comparisons suggest a promising future for the application of such QIVIVE methodologies for screening and prioritization purposes of developmental toxicants. Nevertheless, the clear need for further improvements is acknowledged for a wider application of the approach in chemical safety assessment.


Assuntos
Troca Materno-Fetal , Modelos Biológicos , Testes de Toxicidade , Trofoblastos/efeitos dos fármacos , Animais , Transporte Biológico , Biomarcadores/sangue , Caproatos/toxicidade , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Sangue Fetal/metabolismo , Idade Gestacional , Glicolatos/toxicidade , Humanos , Miconazol/toxicidade , Permeabilidade , Ácidos Ftálicos/toxicidade , Gravidez , Estudo de Prova de Conceito , Ratos , Reprodutibilidade dos Testes , Medição de Risco , Silanos/toxicidade , Toxicocinética , Triazóis/toxicidade , Trofoblastos/metabolismo , Trofoblastos/patologia , Ácido Valproico/toxicidade
7.
Crit Rev Toxicol ; 51(2): 141-164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33853480

RESUMO

Associations between per- and polyfluoroalkyl substances (PFASs) and increased blood lipids have been repeatedly observed in humans, but a causal relation has been debated. Rodent studies show reverse effects, i.e. decreased blood cholesterol and triglycerides, occurring however at PFAS serum levels at least 100-fold higher than those in humans. This paper aims to present the main issues regarding the modulation of lipid homeostasis by the two most common PFASs, PFOS and PFOA, with emphasis on the underlying mechanisms relevant for humans. Overall, the apparent contrast between human and animal data may be an artifact of dose, with different molecular pathways coming into play upon exposure to PFASs at very low versus high levels. Altogether, the interpretation of existing rodent data on PFOS/PFOA-induced lipid perturbations with respect to the human situation is complex. From a mechanistic perspective, research on human liver cells shows that PFOS/PFOA activate the PPARα pathway, whereas studies on the involvement of other nuclear receptors, like PXR, are less conclusive. Other data indicate that suppression of the nuclear receptor HNF4α signaling pathway, as well as perturbations of bile acid metabolism and transport might be important cellular events that require further investigation. Future studies with human-relevant test systems would help to obtain more insight into the mechanistic pathways pertinent for humans. These studies shall be designed with a careful consideration of appropriate dosing and toxicokinetics, so as to enable biologically plausible quantitative extrapolations. Such research will increase the understanding of possible perturbed lipid homeostasis related to PFOS/ PFOA exposure and the potential implications for human health.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Fluorocarbonos , Ácidos Alcanossulfônicos , Caprilatos , Humanos
8.
Environ Toxicol Chem ; 40(3): 859-870, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32729940

RESUMO

Per- and polyfluoroalkyl substances (PFAS) often occur together as contamination in exposure media such as drinking water or food. The relative potency factor (RPF) methodology facilitates the risk assessment of mixture exposure. A database of liver endpoints was established for 16 PFAS, using data with the same species (rat), sex (male), and exposure route (oral) and comparable exposure duration (42-90 d). Dose-response analysis was applied to derive the relative potencies of 3 perfluoroalkyl sulfonic acids (perfluorobutane sulfonic acid, perfluorohexane sulfonic acid, perfluorooctane sulfonic acid), 8 perfluoroalkyl carboxylic acids (perfluorobutanoic acid, perfluorohexanoic acid, perfluorononanoic acid, perfluoroundecanoic acid, perfluorododecanoic acid, perfluorotetradecanoic acid, perfluorohexadecanoic acid, perfluorooctadecanoic acid), 2 perfluoroalkyl ether carboxylic acids (tetrafluoro-2-[heptafluoropropoxy]propanoic acid, 3H-perfluoro-3-[(3-methoxy-propoxy)propanoic acid]), and 2 fluorotelomer alcohols (6:2 FTOH, 8:2 FTOH) compared to perfluorooctanoic acid (PFOA), based on liver effects. In addition, the RPFs of 7 other perfluoroalkyl acids were estimated based on read-across. This resulted in the relative potencies of 22 PFAS compared to the potency of index compound PFOA. The obtained RPFs can be applied to measured PFAS quantities, resulting in the sum of PFOA equivalents in a mixture. This sum can be compared with an established PFOA concentration limit (e.g., in drinking water or food) or an external health-based guidance value (e.g., tolerable daily intake, acceptable daily intake, or reference dose) to estimate the risk resulting from direct oral exposure to mixtures. Assessing mixture exposure is particularly relevant for PFAS, with omnipresent exposure in our daily lives. Environ Toxicol Chem 2021;40:859-870. © 2020 SETAC.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Ácidos Alcanossulfônicos/análise , Animais , Ácidos Carboxílicos , Água Potável/análise , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Masculino , Ratos , Medição de Risco , Ácidos Sulfônicos
9.
Toxicol Appl Pharmacol ; 332: 109-120, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760446

RESUMO

Incorporation of kinetics to quantitative in vitro to in vivo extrapolations (QIVIVE) is a key step for the realization of a non-animal testing paradigm, in the sphere of regulatory toxicology. The use of Physiologically-Based Kinetic (PBK) modelling for determining systemic doses of chemicals at the target site is accepted to be an indispensable element for such purposes. Nonetheless, PBK models are usually designed for a single or a group of compounds and are considered demanding, with respect to experimental data needed for model parameterization. Alternatively, we evaluate here the use of a more generic approach, i.e. the so-called IndusChemFate model, which is based on incorporated QSAR model parametrization. The model was used to simulate the in vivo kinetics of three diverse classes of developmental toxicants: triazoles, glycol ethers' alkoxyacetic acid metabolites and phthalate primary metabolites. The model required specific input per each class of compounds. These compounds were previously tested in three alternative assays: the whole-embryo culture (WEC), the zebrafish embryo test (ZET), and the mouse embryonic stem cell test (EST). Thereafter, the PBK-simulated blood levels at toxic in vivo doses were compared to the respective in vitro effective concentrations. Comparisons pertaining to relative potency and potency ranking with integration of kinetics were similar to previously obtained comparisons. Additionally, all three in vitro systems produced quite comparable results, and hence, a combination of alternative tests is still preferable for predicting the endpoint of developmental toxicity in vivo. This approach is put forward as biologically more plausible since plasma concentrations, rather than external administered doses, constitute the most direct in vivo dose metric.


Assuntos
Relação Dose-Resposta a Droga , Modelos Biológicos , Modelos Moleculares , Testes de Toxicidade , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Estudos de Viabilidade , Camundongos , Modelos Animais , Ácidos Ftálicos/toxicidade , Ratos , Ratos Wistar , Triazóis/toxicidade , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...