Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172911

RESUMO

Dramatic improvements in measuring genetic variation across agriculturally relevant populations (genomics) must be matched by improvements in identifying and measuring relevant trait variation in such populations across many environments (phenomics). Identifying the most critical opportunities and challenges in genome to phenome (G2P) research is the focus of this paper. Previously (Genome Biol, 23(1):1-11, 2022), we laid out how Agricultural Genome to Phenome Initiative (AG2PI) will coordinate activities with USA federal government agencies expand public-private partnerships, and engage with external stakeholders to achieve a shared vision of future the AG2PI. Acting on this latter step, AG2PI organized the "Thinking Big: Visualizing the Future of AG2PI" two-day workshop held September 9-10, 2022, in Ames, Iowa, co-hosted with the United State Department of Agriculture's National Institute of Food and Agriculture (USDA NIFA). During the meeting, attendees were asked to use their experience and curiosity to review the current status of agricultural genome to phenome (AG2P) work and envision the future of the AG2P field. The topic summaries composing this paper are distilled from two 1.5-h small group discussions. Challenges and solutions identified across multiple topics at the workshop were explored. We end our discussion with a vision for the future of agricultural progress, identifying two areas of innovation needed: (1) innovate in genetic improvement methods development and evaluation and (2) innovate in agricultural research processes to solve societal problems. To address these needs, we then provide six specific goals that we recommend be implemented immediately in support of advancing AG2P research.


Assuntos
Agricultura , Fenômica , Estados Unidos , Genômica
2.
Animals (Basel) ; 12(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36552393

RESUMO

This study evaluated the influence of environmental temperature on thermoregulation, hormonal, and hematological characteristics in Caracu cattle. Blood samples, hair length, coat and muzzle colors, rectal (RT), and surface temperatures were collected from 48 males and 43 females before (morning) and after sun exposure for eight hours (afternoon). Infrared thermography (IRT) was used to identify superficial temperature that exhibits a high correlation with RT. Hematological parameters, hormone concentrations, RT, and the superficial temperature obtained by IRT that exhibited the highest correlation with RT were evaluated by variance analysis. Regarding IRT, the lower left side of the body (LS) showed the highest correlation with the RT. Interaction between period and sex was observed for LS, cortisol, and eosinophils. Cortisone, progesterone, and RT were influenced by period and sex. Neutrophils and segmented neutrophils were influenced by the period, which showed the highest concentrations after sun exposure. Platelets, leukocytes, lymphocytes, and monocytes were influenced by sex. Heat stress changes several physiological characteristics where males and females exhibited differences in their responses to heat stress. Furthermore, most characteristics evaluated remained within the regular values observed for taurine Creole breeds, showing that Caracu is adapted to tropical climates.

3.
Animals (Basel) ; 12(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36428423

RESUMO

Feed and water efficiency are important traits to improve beef cattle production's economic and environmental sustainability. This study evaluated residual feed intake (RFI) and residual water intake (RWI) and their relationship with performance, ingestive behavior, and carcass traits in Caracu beef cattle. The data were analyzed using a generalized linear model with least squares means. The ingestive behavior, performance, and carcass traits were influenced by sex (p < 0.05). Males showed higher dry matter intake (DMI), average daily gain (ADG), mid-test metabolic weight (BW0.75), rib eye area, and rump fat thickness than females, besides spending more time drinking and eating. Low RFI animals exhibited higher DMI than high RFI animals. Low RWI animals ingested 3.89 L/d of water further than high RWI animals. The interaction between sex and RWI influenced the DMI, BW0.75, and backfat thickness. The ingestive behavior of low and high RFI animals was similar, although high RWI animals visited a smaller number of drinkers than low RWI animals. Water intake positively affects productive efficiency, and the combined use of RWI and RFI may help improve the selection of more efficient animals contributing to reducing the costs of beef cattle production and improving environmental sustainability.

4.
Front Vet Sci ; 7: 590048, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251271

RESUMO

Infectious hematopoietic necrosis (IHN) is an economically important disease of salmonid fish caused by the IHN virus (IHNV). Under industrial aquaculture settings, IHNV can cause substantial mortality and losses. Actually, there is no confirmed and cost-effective method for IHNV control. Clear Springs Foods, Inc. has been performing family-based selective breeding to increase genetic resistance to IHNV in their rainbow trout breeding program. In an earlier study, we used siblings cross-validation to estimate the accuracy of genomic prediction (GP) for IHNV resistance in this breeding population. In the present report, we used empirical progeny testing data to evaluate whether genomic selection (GS) can improve the accuracy of breeding value predictions over traditional pedigree-based best linear unbiased predictions (PBLUP). We found that the GP accuracy with single-step GBLUP (ssGBLUP) outperformed PBLUP by 15% (from 0.33 to 0.38). Furthermore, we found that ssGBLUP had higher GP accuracy than weighted ssGBLUP (wssGBLUP) and single-step Bayesian multiple regression (ssBMR) models with BayesB and BayesC priors which supports our previous findings that the underlying liability of genetic resistance against IHNV in this breeding population might be polygenic. Our results show that GS can be more effective than either the traditional pedigree-based PBLUP model or the marker-assisted selection approach for improving genetic resistance against IHNV in this commercial rainbow trout population.

5.
Genet Sel Evol ; 51(1): 47, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31455244

RESUMO

BACKGROUND: Infectious hematopoietic necrosis (IHN) is a disease of salmonid fish that is caused by the IHN virus (IHNV). Under intensive aquaculture conditions, IHNV can cause significant mortality and economic losses. Currently, there is no proven and cost-effective method for IHNV control. Clear Springs Foods, Inc. has been applying selective breeding to improve genetic resistance to IHNV in their rainbow trout breeding program. The goals of this study were to elucidate the genetic architecture of IHNV resistance in this commercial population by performing genome-wide association studies (GWAS) with multiple regression single-step methods and to assess if genomic selection can improve the accuracy of genetic merit predictions over conventional pedigree-based best linear unbiased prediction (PBLUP) using cross-validation analysis. RESULTS: Ten moderate-effect quantitative trait loci (QTL) associated with resistance to IHNV that jointly explained up to 42% of the additive genetic variance were detected in our GWAS. Only three of the 10 QTL were detected by both single-step Bayesian multiple regression (ssBMR) and weighted single-step GBLUP (wssGBLUP) methods. The accuracy of breeding value predictions with wssGBLUP (0.33-0.39) was substantially better than with PBLUP (0.13-0.24). CONCLUSIONS: Our comprehensive genome-wide scan for QTL revealed that genetic resistance to IHNV is controlled by the oligogenic inheritance of up to 10 moderate-effect QTL and many small-effect loci in this commercial rainbow trout breeding population. Taken together, our results suggest that whole genome-enabled selection models will be more effective than the conventional pedigree-based method for breeding value estimation or the marker-assisted selection approach for improving the genetic resistance of rainbow trout to IHNV in this population.


Assuntos
Doenças dos Peixes/genética , Vírus da Necrose Hematopoética Infecciosa , Oncorhynchus mykiss/genética , Infecções por Rhabdoviridae/veterinária , Animais , Teorema de Bayes , Cruzamento , Cruzamentos Genéticos , Resistência à Doença/genética , Doenças dos Peixes/virologia , Pesqueiros , Estudo de Associação Genômica Ampla/veterinária , Herança Multifatorial , Oncorhynchus mykiss/virologia , Locos de Características Quantitativas , Infecções por Rhabdoviridae/genética
6.
J Anim Breed Genet ; 136(1): 40-50, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30426582

RESUMO

We investigated the effects of different strategies for genotyping populations on variance components and heritabilities estimated with an animal model under restricted maximum likelihood (REML), genomic REML (GREML), and single-step GREML (ssGREML). A population with 10 generations was simulated. Animals from the last one, two or three generations were genotyped with 45,116 SNP evenly distributed on 27 chromosomes. Animals to be genotyped were chosen randomly or based on EBV. Each scenario was replicated five times. A single trait was simulated with three heritability levels (low, moderate, high). Phenotypes were simulated for only females to mimic dairy sheep and also for both sexes to mimic meat sheep. Variance component estimates from genomic data and phenotypes for one or two generations were more biased than from three generations. Estimates in the scenario without selection were the most accurate across heritability levels and methods. When selection was present in the simulations, the best option was to use genotypes of randomly selected animals. For selective genotyping, heritabilities from GREML were more biased compared to those estimated by ssGREML, because ssGREML was less affected by selective or limited genotyping.


Assuntos
Genômica , Técnicas de Genotipagem/métodos , Animais , Funções Verossimilhança , Masculino , Modelos Genéticos , Linhagem
7.
Front Genet ; 8: 156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109734

RESUMO

Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect quantitative trait loci (QTL) for BCWD resistance in rainbow trout (Oncorhynchus mykiss). However, the recent availability of a 57 K SNP array and a reference genome assembly have enabled us to conduct genome-wide association studies (GWAS) that overcome several experimental limitations from our previous work. In the current study, we conducted GWAS for BCWD resistance in two rainbow trout breeding populations using two genotyping platforms, the 57 K Affymetrix SNP array and restriction-associated DNA (RAD) sequencing. Overall, we identified 14 moderate-large effect QTL that explained up to 60.8% of the genetic variance in one of the two populations and 27.7% in the other. Four of these QTL were found in both populations explaining a substantial proportion of the variance, although major differences were also detected between the two populations. Our results confirm that BCWD resistance is controlled by the oligogenic inheritance of few moderate-large effect loci and a large-unknown number of loci each having a small effect on BCWD resistance. We detected differences in QTL number and genome location between two GWAS models (weighted single-step GBLUP and Bayes B), which highlights the utility of using different models to uncover QTL. The RAD-SNPs detected a greater number of QTL than the 57 K SNP array in one population, suggesting that the RAD-SNPs may uncover polymorphisms that are more unique and informative for the specific population in which they were discovered.

9.
Genet Sel Evol ; 49(1): 59, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747171

RESUMO

BACKGROUND: Much effort is put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, empowered by the availability of dense single nucleotide polymorphism (SNP) information. Genomic selection using traditional SNP information is easily implemented for any number of genotyped individuals using single-step genomic best linear unbiased predictor (ssGBLUP) with the algorithm for proven and young (APY). Our aim was to investigate whether ssGBLUP is useful for genomic prediction when some or all QTN are known. METHODS: Simulations included 180,000 animals across 11 generations. Phenotypes were available for all animals in generations 6 to 10. Genotypes for 60,000 SNPs across 10 chromosomes were available for 29,000 individuals. The genetic variance was fully accounted for by 100 or 1000 biallelic QTN. Raw genomic relationship matrices (GRM) were computed from (a) unweighted SNPs, (b) unweighted SNPs and causative QTN, (c) SNPs and causative QTN weighted with results obtained with genome-wide association studies, (d) unweighted SNPs and causative QTN with simulated weights, (e) only unweighted causative QTN, (f-h) as in (b-d) but using only the top 10% causative QTN, and (i) using only causative QTN with simulated weight. Predictions were computed by pedigree-based BLUP (PBLUP) and ssGBLUP. Raw GRM were blended with 1 or 5% of the numerator relationship matrix, or 1% of the identity matrix. Inverses of GRM were obtained directly or with APY. RESULTS: Accuracy of breeding values for 5000 genotyped animals in the last generation with PBLUP was 0.32, and for ssGBLUP it increased to 0.49 with an unweighted GRM, 0.53 after adding unweighted QTN, 0.63 when QTN weights were estimated, and 0.89 when QTN weights were based on true effects known from the simulation. When the GRM was constructed from causative QTN only, accuracy was 0.95 and 0.99 with blending at 5 and 1%, respectively. Accuracies simulating 1000 QTN were generally lower, with a similar trend. Accuracies using the APY inverse were equal or higher than those with a regular inverse. CONCLUSIONS: Single-step GBLUP can account for causative QTN via a weighted GRM. Accuracy gains are maximum when variances of causative QTN are known and blending is at 1%.


Assuntos
Cruzamento , Genoma/genética , Modelos Genéticos , Locos de Características Quantitativas/genética , Animais , Simulação por Computador , Estudo de Associação Genômica Ampla , Genótipo , Nucleotídeos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
Genet Sel Evol ; 49(1): 17, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28148220

RESUMO

BACKGROUND: Previously, we have shown that bacterial cold water disease (BCWD) resistance in rainbow trout can be improved using traditional family-based selection, but progress has been limited to exploiting only between-family genetic variation. Genomic selection (GS) is a new alternative that enables exploitation of within-family genetic variation. METHODS: We compared three GS models [single-step genomic best linear unbiased prediction (ssGBLUP), weighted ssGBLUP (wssGBLUP), and BayesB] to predict genomic-enabled breeding values (GEBV) for BCWD resistance in a commercial rainbow trout population, and compared the accuracy of GEBV to traditional estimates of breeding values (EBV) from a pedigree-based BLUP (P-BLUP) model. We also assessed the impact of sampling design on the accuracy of GEBV predictions. For these comparisons, we used BCWD survival phenotypes recorded on 7893 fish from 102 families, of which 1473 fish from 50 families had genotypes [57 K single nucleotide polymorphism (SNP) array]. Naïve siblings of the training fish (n = 930 testing fish) were genotyped to predict their GEBV and mated to produce 138 progeny testing families. In the following generation, 9968 progeny were phenotyped to empirically assess the accuracy of GEBV predictions made on their non-phenotyped parents. RESULTS: The accuracy of GEBV from all tested GS models were substantially higher than the P-BLUP model EBV. The highest increase in accuracy relative to the P-BLUP model was achieved with BayesB (97.2 to 108.8%), followed by wssGBLUP at iteration 2 (94.4 to 97.1%) and 3 (88.9 to 91.2%) and ssGBLUP (83.3 to 85.3%). Reducing the training sample size to n = ~1000 had no negative impact on the accuracy (0.67 to 0.72), but with n = ~500 the accuracy dropped to 0.53 to 0.61 if the training and testing fish were full-sibs, and even substantially lower, to 0.22 to 0.25, when they were not full-sibs. CONCLUSIONS: Using progeny performance data, we showed that the accuracy of genomic predictions is substantially higher than estimates obtained from the traditional pedigree-based BLUP model for BCWD resistance. Overall, we found that using a much smaller training sample size compared to similar studies in livestock, GS can substantially improve the selection accuracy and genetic gains for this trait in a commercial rainbow trout breeding population.


Assuntos
Cruzamento , Temperatura Baixa , Resistência à Doença/genética , Doenças dos Peixes/genética , Modelos Genéticos , Oncorhynchus mykiss/genética , Linhagem , Seleção Genética , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Teorema de Bayes , Doenças dos Peixes/microbiologia , Marcadores Genéticos , Genômica/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Reprodutibilidade dos Testes
11.
Front Genet ; 7: 96, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303436

RESUMO

Bacterial cold water disease (BCWD) causes significant economic losses in salmonid aquaculture, and traditional family-based breeding programs aimed at improving BCWD resistance have been limited to exploiting only between-family variation. We used genomic selection (GS) models to predict genomic breeding values (GEBVs) for BCWD resistance in 10 families from the first generation of the NCCCWA BCWD resistance breeding line, compared the predictive ability (PA) of GEBVs to pedigree-based estimated breeding values (EBVs), and compared the impact of two SNP genotyping methods on the accuracy of GEBV predictions. The BCWD phenotypes survival days (DAYS) and survival status (STATUS) had been recorded in training fish (n = 583) subjected to experimental BCWD challenge. Training fish, and their full sibs without phenotypic data that were used as parents of the subsequent generation, were genotyped using two methods: restriction-site associated DNA (RAD) sequencing and the Rainbow Trout Axiom® 57 K SNP array (Chip). Animal-specific GEBVs were estimated using four GS models: BayesB, BayesC, single-step GBLUP (ssGBLUP), and weighted ssGBLUP (wssGBLUP). Family-specific EBVs were estimated using pedigree and phenotype data in the training fish only. The PA of EBVs and GEBVs was assessed by correlating mean progeny phenotype (MPP) with mid-parent EBV (family-specific) or GEBV (animal-specific). The best GEBV predictions were similar to EBV with PA values of 0.49 and 0.46 vs. 0.50 and 0.41 for DAYS and STATUS, respectively. Among the GEBV prediction methods, ssGBLUP consistently had the highest PA. The RAD genotyping platform had GEBVs with similar PA to those of GEBVs from the Chip platform. The PA of ssGBLUP and wssGBLUP methods was higher with the Chip, but for BayesB and BayesC methods it was higher with the RAD platform. The overall GEBV accuracy in this study was low to moderate, likely due to the small training sample used. This study explored the potential of GS for improving resistance to BCWD in rainbow trout using, for the first time, progeny testing data to assess the accuracy of GEBVs, and it provides the basis for further investigation on the implementation of GS in commercial rainbow trout populations.

12.
Genet Sel Evol ; 47: 56, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26133806

RESUMO

BACKGROUND: As more and more genotypes become available, accuracy of genomic evaluations can potentially increase. However, the impact of genotype data on accuracy depends on the structure of the genotyped cohort. For populations such as dairy cattle, the greatest benefit has come from genotyping sires with high accuracy, whereas the benefit due to adding genotypes from cows was smaller. In broiler chicken breeding programs, males have less progeny than dairy bulls, females have more progeny than dairy cows, and most production traits are recorded for both sexes. Consequently, genotyping both sexes in broiler chickens may be more advantageous than in dairy cattle. METHODS: We studied the contribution of genotypes from males and females using a real dataset with genotypes on 15 723 broiler chickens. Genomic evaluations used three training sets that included only males (4648), only females (8100), and both sexes (12 748). Realized accuracies of genomic estimated breeding values (GEBV) were used to evaluate the benefit of including genotypes for different training populations on genomic predictions of young genotyped chickens. RESULTS: Using genotypes on males, the average increase in accuracy of GEBV over pedigree-based EBV for males and females was 12 and 1 percentage points, respectively. Using female genotypes, this increase was 1 and 18 percentage points, respectively. Using genotypes of both sexes increased accuracies by 19 points for males and 20 points for females. For two traits with similar heritabilities and amounts of information, realized accuracies from cross-validation were lower for the trait that was under strong selection. CONCLUSIONS: Overall, genotyping males and females improves predictions of all young genotyped chickens, regardless of sex. Therefore, when males and females both contribute to genetic progress of the population, genotyping both sexes may be the best option.


Assuntos
Cruzamento/métodos , Galinhas/genética , Genótipo , Animais , Bases de Dados Genéticas , Feminino , Masculino , Linhagem , Característica Quantitativa Herdável
13.
Neurotoxicology ; 32(6): 776-84, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21781985

RESUMO

Studies have shown cases of poisoning with plants from the genus Crotalaria (Leguminosae) mainly in animals. They induce damages in the central nervous system (CNS), which has been attributed to toxic effects of the pyrrolizidine alkaloid (PA) monocrotaline (MCT). Previously we demonstrated that both MCT and dehydromonocrotaline (DHMC), its main active metabolite, induce changes in the levels and patterns of expression of the main protein from astrocyte cytoskeleton, glial fibrillary acidic protein (GFAP). In this study we investigated the effect of MCT on rat cortical astrocyte/neuron primary co-cultures. Primary cultures were exposed to 10 or 100 µM MCT. The MTT test and the measurement of LDH activity on the culture medium revealed that after 24h exposure MCT was not cytotoxic to neuron/astrocyte cells. However, the cell viability after 72 h treatment decreased in 10-20%, and the LDH levels in the culture medium increased at a rate of 12% and 23%, in cultures exposed to 10 or 100 µM MCT. Rosenfeld staining showed vacuolization and increase in cell body in astrocytes after MCT exposure. Immunocytochemistry and Western blot analyses revealed changes on pattern of GFAP and ßIII-tubulin expression and steady state levels after MCT treatment, with a dose and time dependent intense down regulation and depolarization of neuronal ßIII-tubulin. Moreover, treatment with 100 µM MCT for 12h induced GSH depletion, which was not seen when cytochrome P450 enzyme system was inhibited indicating that it is involved in MCT induced cytotoxicity in CNS cells.


Assuntos
Astrócitos/efeitos dos fármacos , Cérebro/efeitos dos fármacos , Crotalaria , Monocrotalina/toxicidade , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Western Blotting , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cérebro/embriologia , Cérebro/metabolismo , Cérebro/patologia , Técnicas de Cocultura , Crotalaria/química , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/metabolismo , Imuno-Histoquímica , L-Lactato Desidrogenase/metabolismo , Monocrotalina/isolamento & purificação , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar , Fatores de Tempo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...