Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(26): 43522-43534, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178446

RESUMO

A two-dimensional (2D) mathematical model of quadratically distorted (QD) grating is established with the principles of Fraunhofer diffraction and Fourier optics. A discrete sampling method is applied for finding a numerical solution of the diffraction pattern of QD grating. An optimized working phase term, which determines the balanced energies and high efficiency of multi-plane images, can be obtained by the bisection algorithm. To confirm the analytical approach described above, the results have been compared with those obtained using a classical numerical model based on Fraunhofer diffraction theory and a fast Fourier transform (FFT) algorithm. The results show that our analytical approach allows the precise design of QD grating and improves the optical performance of simultaneous multi-plane imaging system. An optical setup based on our well-designed QD grating has been appended to the camera port of a commercial microscope, and some preliminary microscopy images have been successfully obtained. Further upgrade of our analytical model is in progress to improve the image quality and promote the applications.

3.
Cell Death Dis ; 8(6): e2902, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28661485

RESUMO

Stimulating bone formation is an important challenge for bone anabolism in osteoporotic patients or to repair bone defects. The osteogenic properties of matrix glycosaminoglycans (GAGs) have been explored; however, the functions of GAGs at the surface of bone-forming cells are less documented. Syndecan-2 is a membrane heparan sulfate proteoglycan that is associated with osteoblastic differentiation. We used a transgenic mouse model with high syndecan-2 expression in osteoblasts to enrich the bone surface with cellular GAGs. Bone mass was increased in these transgenic mice. Syndecan-2 overexpression reduced the expression of receptor activator of NF-kB ligand (RANKL) in bone marrow cells and strongly inhibited bone resorption. Osteoblast activity was not modified in the transgenic mice, but bone formation was decreased in 4-month-old transgenic mice because of reduced osteoblast number. Increased proteoglycan expression at the bone surface resulted in decreased osteoblastic and osteoclastic precursors in bone marrow. Indeed, syndecan-2 overexpression increased apoptosis of mesenchymal precursors within the bone marrow. However, syndecan-2 specifically promoted the vasculature characterized by high expression of CD31 and Endomucin in 6-week-old transgenic mice, but this was reduced in 12-week-old transgenic mice. Finally, syndecan-2 functions as an inhibitor of Wnt-ß-catenin-T-cell factor signaling pathway, activating glycogen synthase kinase 3 and then decreasing the Wnt-dependent production of Wnt ligands and R-spondin. In conclusion, our results show that GAG supply may improve osteogenesis, but also interfere with the crosstalk between the bone surface and marrow cells, altering the supporting function of osteoblasts.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Glicosaminoglicanos/administração & dosagem , Heparitina Sulfato/administração & dosagem , Sindecana-2/genética , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Remodelação Óssea/genética , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ligante RANK , Via de Sinalização Wnt/efeitos dos fármacos
4.
Nat Commun ; 7: 8674, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26912388

RESUMO

The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology.


Assuntos
Embriologia/métodos , Imageamento Tridimensional/métodos , Microscopia , Fluxo de Trabalho , Animais , Linhagem da Célula , Proliferação de Células , Ouriços-do-Mar , Urocordados , Peixe-Zebra
5.
Mol Cell Biol ; 29(4): 953-64, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19075000

RESUMO

Wnt signaling plays an important role in the regulation of bone formation and bone mass. The mechanisms that regulate canonical Wnt signaling in osteoblasts are not fully understood. We show here a novel mechanism by which the adhesion molecule N-cadherin interacts with the Wnt coreceptor LRP5 and regulates canonical Wnt/beta-catenin signaling in osteoblasts. We demonstrate that N-cadherin, besides associating with beta-catenin at the membrane, forms a molecular complex with axin and LRP5 involving the LRP5 cytoplasmic tail domain. N-cadherin overexpression in osteoblasts increases N-cadherin-LRP5 interaction, causing increased beta-catenin degradation and altered TCF/LEF transcription in response to Wnt3a. This mechanism results in decreased osteoblast gene expression and osteogenesis in basal conditions and in response to Wnt3a. Consistent with a functional mechanism, silencing N-cadherin expression in control cells increases TCF/LEF transcription and enhances the response to Wnt3a. Using N-cadherin transgenic mice, we show that increased N-cadherin-LRP5 interaction resulting from targeted overexpression of N-cadherin in osteoblasts causes increased beta-catenin ubiquitination and results in cell-autonomous defective osteoblast function, reduced bone formation, and delayed bone mass acquisition. These data indicate that a previously unrecognized N-cadherin-axin-LRP5 interaction negatively regulates Wnt/beta-catenin signaling and is critical in the regulation of osteoblast function, bone formation, and bone mass.


Assuntos
Caderinas/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Osteoblastos/metabolismo , Osteogênese , Proteínas Repressoras/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Animais Recém-Nascidos , Proteína Axina , Osso e Ossos/anatomia & histologia , Osso e Ossos/metabolismo , Diferenciação Celular , Linhagem Celular , Regulação para Baixo , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Camundongos Transgênicos , Tamanho do Órgão , Osteoblastos/citologia , Ligação Proteica , Ratos , Transdução de Sinais , Ubiquitinação , Proteína Wnt3 , Proteína Wnt3A
6.
Development ; 133(7): 1253-62, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16495311

RESUMO

The vertebrate hindbrain is subject to a transient segmentation process leading to the formation of seven or eight metameric territories termed rhombomeres (r). This segmentation provides the basis for the subsequent establishment of hindbrain neuronal organization and participates in the patterning of the neural crest involved in craniofacial development. The zinc-finger gene Krox20 is expressed in r3 and r5, and encodes a transcription factor that plays a key role in hindbrain segmentation, coordinating segment formation, specification of odd- and even-numbered rhombomeres, and cell segregation between adjacent segments, through the regulation of numerous downstream genes. In order to further elucidate the genetic network underlying hindbrain segmentation, we have undertaken the analysis of the cis-regulatory sequences governing Krox20 expression. We have found that the control of Krox20 transcription relies on three very long-range (200 kb) enhancer elements (A, B and C) that are conserved between chick, mouse and human genomes. Elements B and C are activated at the earliest stage of Krox20 expression in r5 and r3-r5, respectively, and do not require the Krox20 protein. These elements are likely to function as initiators of Krox20 expression. Element B contains a binding site for the transcription factor vHNF1, the mutation of which abolishes its activity, suggesting that vHNF1 is a direct initiator of Krox20 expression in r5. Element A contains Krox20-binding sites, which are required, together with the Krox20 protein, for its activity. This element therefore allows the establishment of a direct positive autoregulatory loop, which takes the relay of the initiator elements and maintains Krox20 expression. Together, our studies provide a basis for a model of the molecular mechanisms controlling Krox20 expression in the developing hindbrain and neural crest.


Assuntos
Padronização Corporal , Proteína 2 de Resposta de Crescimento Precoce/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Rombencéfalo/embriologia , Fatores de Transcrição/genética , Animais , Sequência de Bases , Sítios de Ligação , Embrião de Galinha , Sequência Conservada , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Galactosídeos/metabolismo , Genes Reporter , Genoma Humano , Fator 1-beta Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/metabolismo , Humanos , Hibridização In Situ , Indóis/metabolismo , Óperon Lac , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Modelos Genéticos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ligação Proteica , Rombencéfalo/metabolismo , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
7.
J Bone Miner Res ; 19(5): 811-22, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15068505

RESUMO

UNLABELLED: Mice specifically overexpressing TIMP-1 in osteoblasts have been generated to investigate the role of MMPs in bone in vivo. These mice displayed increased trabecular bone volume and decreased bone turnover. This model provides evidence of the role played by the MMPs in bone remodeling and balance. INTRODUCTION: Although it has been suggested that the matrix metalloproteinases (MMPs) may play a role in initiating the bone resorption process in vitro, there is no evidence that they play any role in in vivo bone maintenance. MATERIALS AND METHODS: We used an artificial promoter specifically driving cells of the osteoblastic lineage to overexpress the tissue inhibitor of MMPs (TIMP-1) cDNA in mice. Densitometric analysis, using DXA and pQCT, and static and dynamic histomorphometry were used to evaluate the bone phenotype both in male and female transgenic mice. We evaluated osteoblastic differentiation using a primary osteoblast culture and osteoclast activity using an ex vivo organ culture. RESULTS AND CONCLUSION: We showed that at 1 and 2.5 months of age, only the female mice exhibited a bone phenotype. These mice displayed specific increases in the BMD and bone volume of trabecular bone. This increase was accompanied by decreased trabecular separation, suggesting a decrease in bone resorption. Using an ex vivo resorption assay, we demonstrated that parathyroid hormone (PTH)-stimulated bone resorption was reduced in these mice. Evaluation of the bone histomorphometric dynamic parameters showed that the mineralizing surfaces and bone formation rate were both reduced. There was no change in the mineralization lag time or number of osteocyte lacunae. Using primary osteoblast culture and molecular analysis, we showed that the differentiation and function of osteoblasts from transgenic mice were normal, but that the ex vivo formation of mineralized nodules was delayed. This model is the first to show that in vivo MMPs play a role in bone remodeling and bone balance. Moreover, our data suggest that MMP activity could be involved in the hormonal regulation of bone resorption by osteoblasts.


Assuntos
Osso e Ossos/metabolismo , Metaloproteases/antagonistas & inibidores , Osteoblastos/enzimologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Densidade Óssea/fisiologia , Reabsorção Óssea/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/ultraestrutura , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Inibidores de Proteases/metabolismo , Radiografia , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/fisiologia
8.
Development ; 130(5): 941-53, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12538520

RESUMO

Neural crest patterning constitutes an important element in the control of the morphogenesis of craniofacial structures. Krox20, a transcription factor gene that plays a critical role in the development of the segmented hindbrain, is expressed in rhombomeres (r) 3 and 5 and in a stream of neural crest cells migrating from r5 toward the third branchial arch. We have investigated the basis of the specific neural crest expression of Krox20 and identified a cis-acting enhancer element (NCE) located 26 kb upstream of the gene that is conserved between mouse, man and chick and can recapitulate the Krox20 neural crest pattern in transgenic mice. Functional dissection of the enhancer revealed the presence of two conserved Krox20 binding sites mediating direct Krox20 autoregulation in the neural crest. In addition, the enhancer included another essential element containing conserved binding sites for high mobility group (HMG) box proteins and which responded to factors expressed throughout the neural crest. Consistent with this the NCE was strongly activated in vitro by Sox10, a crest-specific HMG box protein, in synergism with Krox20, and the inactivation of Sox10 prevented the maintenance of Krox20 expression in the migrating neural crest. These results suggest that the dependency of the enhancer on both crest- (Sox10) and r5- (Krox20) specific factors limits its activity to the r5-derived neural crest. This organisation also suggests a mechanism for the transfer and maintenance of rhombomere-specific gene expression from the hindbrain neuroepithelium to the emerging neural crest and may be of more general significance for neural crest patterning.


Assuntos
Padronização Corporal , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Crista Neural/fisiologia , Fatores de Transcrição/genética , Animais , Sequência de Bases , Sítios de Ligação , Embrião de Galinha , Proteínas de Ligação a DNA/metabolismo , Proteína 2 de Resposta de Crescimento Precoce , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Genes Reporter , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Modelos Genéticos , Crista Neural/anatomia & histologia , Fatores de Transcrição SOXE , Fatores de Transcrição/metabolismo
9.
Development ; 129(17): 4065-74, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12163409

RESUMO

Transgenic mice expressing the homeobox gene Hoxa5 under the control of Hoxb2 regulatory elements present a growth arrest during weeks two and three of postnatal development, resulting in proportionate dwarfism. These mice present a liver phenotype illustrated by a 12-fold increase in liver insulin-like growth factor binding protein 1 (IGFBP1) mRNA and a 50% decrease in liver insulin-like growth factor 1 (IGF1) mRNA correlated with a 50% decrease in circulating IGF1. We show that the Hoxa5 transgene is expressed in the liver of these mice, leading to an overexpression of total (endogenous plus transgene) Hoxa5 mRNA in this tissue. We have used several cell lines to investigate a possible physiological interaction of Hoxa5 with the main regulator of IGFBP1 promoter activity, the Forkhead box transcription factor FKHR. In HepG2 cells, Hoxa5 has little effect by itself but inhibits the FKHR-dependent activation of the IGFBP1 promoter. In HuF cells, Hoxa5 cooperates with FKHR to dramatically enhance IGFBP1 promoter activity. This context-dependent physiological interaction probably corresponds to the existence of a direct interaction between Hoxa5 and FKHR and FoxA2/HNF3beta, as demonstrated by pull-down experiments achieved either in vitro or after cellular co-expression. In conclusion, we propose that the impaired growth observed in this transgenic line relates to a liver phenotype best explained by a direct interaction between Hoxa5 and liver-specific Forkhead box transcription factors, in particular FKHR but also Foxa2/HNF3beta. Because Hoxa5 and homeogenes of the same paralog group are normally expressed in the liver, the present results raise the possibility that homeoproteins, in addition to their established role during early development, regulate systemic physiological functions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Nanismo/genética , Proteínas de Homeodomínio/fisiologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Sistema Nervoso/embriologia , Fosfoproteínas/fisiologia , Fatores de Transcrição/metabolismo , Animais , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead , Fator 3-beta Nuclear de Hepatócito , Proteínas de Homeodomínio/genética , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Regulação para Cima
10.
Development ; 129(1): 155-66, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11782409

RESUMO

In Schwann cells (SC), myelination is controlled by the transcription factor gene Krox20/Egr2. Analysis of cis-acting elements governing Krox20 expression in SC revealed the existence of two separate elements. The first, designated immature Schwann cell element (ISE), was active in immature but not myelinating SC, whereas the second, designated myelinating Schwann cell element (MSE), was active from the onset of myelination to adulthood in myelinating SC. In vivo sciatic nerve regeneration experiments demonstrated that both elements were activated during this process, in an axon-dependent manner. Together the activity of these elements reproduced the profile of Krox20 expression during development and regeneration. Genetic studies showed that both elements were active in a Krox20 mutant background, while the activity of the MSE, but likely not of the ISE, required the POU domain transcription factor Oct6 at the time of myelination. The MSE was localised to a 1.3 kb fragment, 35 kb downstream of Krox20. The identification of multiple Oct6 binding sites within this fragment suggested that Oct6 directly controls Krox20 transcription. Taken together, these data indicate that, although Krox20 is expressed continuously from 15.5 dpc in SC, the regulation of its expression is a biphasic, axon-dependent phenomenon involving two cis-acting elements that act in succession during development. In addition, they provide insight into the complexity of the transcription factor regulatory network controlling myelination.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Células de Schwann/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Diferenciação Celular/fisiologia , Sequência Conservada , Proteína 2 de Resposta de Crescimento Precoce , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Regeneração Nervosa , Células de Schwann/citologia , Nervo Isquiático/fisiologia , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...