Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 36(11): 957-959, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34456068

RESUMO

We propose 'triple-blind review' for peer-reviewed journals - a process that keeps author identities and affiliations blind to manuscript editors until after first appraisal. Blinded appraisal will help to reduce the biases that negatively affect under-represented and minority scientists, ultimately better supporting equity in scientific publishing.


Assuntos
Editoração , Humanos
2.
Proc Biol Sci ; 288(1948): 20210054, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33823664

RESUMO

As temperatures rise, motile species start to redistribute to more suitable areas, potentially affecting the persistence of several resident species and altering biodiversity and ecosystem functions. In the Barents Sea, a hotspot for global warming, marine fish from boreal regions have been increasingly found in the more exclusive Arctic region. Here, we show that this shift in species distribution is increasing species richness and evenness, and even more so, the functional diversity of the Arctic. Higher diversity is often interpreted as being positive for ecosystem health and is a target for conservation. However, the increasing trend observed here may be transitory as the traits involved threaten Arctic species via predation and competition. If the pressure from global warming continues to rise, the ensuing loss of Arctic species will result in a reduction in functional diversity.


Assuntos
Biodiversidade , Ecossistema , Animais , Regiões Árticas , Peixes , Temperatura
3.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33771867

RESUMO

Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes.

5.
Glob Chang Biol ; 26(9): 4894-4906, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32479687

RESUMO

Species are redistributing globally in response to climate warming, impacting ecosystem functions and services. In the Barents Sea, poleward expansion of boreal species and a decreased abundance of Arctic species are causing a rapid borealization of the Arctic communities. This borealization might have profound consequences on the Arctic food web by creating novel feeding interactions between previously non co-occurring species. An early identification of new feeding links is crucial to predict their ecological impact. However, detection by traditional approaches, including stomach content and isotope analyses, although fundamental, cannot cope with the speed of change observed in the region, nor with the urgency of understanding the consequences of species redistribution for the marine ecosystem. In this study, we used an extensive food web (metaweb) with nearly 2,500 documented feeding links between 239 taxa coupled with a trait data set to predict novel feeding interactions and to quantify their potential impact on Arctic food web structure. We found that feeding interactions are largely determined by the body size of interacting species, although species foraging habitat and metabolic type are also important predictors. Further, we found that all boreal species will have at least one potential resource in the Arctic region should they redistribute therein. During 2014-2017, 11 boreal species were observed in the Arctic region of the Barents Sea. These incoming species, which are all generalists, change the structural properties of the Arctic food web by increasing connectance and decreasing modularity. In addition, these boreal species are predicted to initiate novel feeding interactions with the Arctic residents, which might amplify their impact on Arctic food web structure affecting ecosystem functioning and vulnerability. Under the ongoing species redistribution caused by environmental change, we propose merging a trait-based approach with ecological network analysis to efficiently predict the impacts of range-shifting species on food webs.


Assuntos
Ecossistema , Cadeia Alimentar , Regiões Árticas , Clima , Mudança Climática
6.
Sci Total Environ ; 661: 306-315, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30677678

RESUMO

Global patterns of biodiversity have emerged for soil microorganisms, plants and animals, and the extraordinary significance of microbial functions in ecosystems is also well established. Virtually unknown, however, are large-scale patterns of microbial diversity in freshwaters, although these aquatic ecosystems are hotspots of biodiversity and biogeochemical processes. Here we report on the first large-scale study of biodiversity of leaf-litter fungi in streams along a latitudinal gradient unravelled by Illumina sequencing. The study is based on fungal communities colonizing standardized plant litter in 19 globally distributed stream locations between 69°N and 44°S. Fungal richness suggests a hump-shaped distribution along the latitudinal gradient. Strikingly, community composition of fungi was more clearly related to thermal preferences than to biogeography. Our results suggest that identifying differences in key environmental drivers, such as temperature, among taxa and ecosystem types is critical to unravel the global patterns of aquatic fungal diversity.


Assuntos
Fungos , Microbiota , Rios/microbiologia , Folhas de Planta/microbiologia , Análise Espacial
7.
Trends Ecol Evol ; 33(4): 260-268, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29456188

RESUMO

Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions - parasitism - has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite-host interactions should be incorporated into the BD-EF framework.


Assuntos
Biodiversidade , Interações Hospedeiro-Parasita , Modelos Biológicos , Ecossistema
8.
Proc Natl Acad Sci U S A ; 114(46): 12202-12207, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087943

RESUMO

Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions.


Assuntos
Distribuição Animal , Mudança Climática , Peixes/fisiologia , Modelos Estatísticos , Adaptação Biológica , Animais , Regiões Árticas , Ecossistema , Temperatura
9.
Sci Rep ; 7(1): 10562, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874830

RESUMO

Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.


Assuntos
Ecossistema , Folhas de Planta/metabolismo , Plantas/metabolismo , Rios , Clima Tropical , Nitrogênio/metabolismo , Fósforo/metabolismo
10.
Ecology ; 96(2): 550-61, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26240875

RESUMO

Biodiversity and ecosystem-functioning theory suggest that litter mixtures composed of dissimilar leaf species can enhance decomposition due to species trait complementarity. Here we created a continuous gradient of litter chemistry trait variability within species mixtures to assess effects of litter dissimilarity on three related processes in a natural stream: litter decomposition, fungal biomass accrual in the litter, and nitrogen and phosphorus immobilization. Litter from a pool of eight leaf species was analyzed for chemistry traits affecting decomposition (lignin, nitrogen, and phosphorus) and assembled in all of the 28 possible two-species combinations. Litter dissimilarity was characterized in terms of a range of trait-diversity measures, using Euclidean and Gower distances and dendrogram-based indices. We found large differences in decomposition rates among leaf species, but no significant relationships between decomposition rate of individual leaf species and litter trait dissimilarity, irrespective of whether decomposition was mediated by microbes alone or by both microbes and litter-consuming invertebrates. Likewise, no effects of trait dissimilarity emerged on either fungal biomass accrual or changes during decomposition of nitrogen or phosphorus concentrations in individual leaf species. In line with recent meta-analyses, these results provide support for the contention that litter diversity effects on decomposition, at least in streams, are less pronounced than effects on terrestrial primary productivity.


Assuntos
Fungos/fisiologia , Nitrogênio/química , Fósforo/química , Folhas de Planta/anatomia & histologia , Biodegradação Ambiental , Biomassa , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/química , Folhas de Planta/microbiologia , Especificidade da Espécie , Árvores
11.
J Anim Ecol ; 83(2): 460-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26046457

RESUMO

Despite ample experimental evidence indicating that biodiversity might be an important driver of ecosystem processes, its role in the functioning of real ecosystems remains unclear. In particular, the understanding of which aspects of biodiversity are most important for ecosystem functioning, their importance relative to other biotic and abiotic drivers, and the circumstances under which biodiversity is most likely to influence functioning in nature, is limited. We conducted a field study that focussed on a guild of insect detritivores in streams, in which we quantified variation in the process of leaf decomposition across two habitats (riffles and pools) and two seasons (autumn and spring). The study was conducted in six streams, and the same locations were sampled in the two seasons. With the aid of structural equations modelling, we assessed spatiotemporal variation in the roles of three key biotic drivers in this process: functional diversity, quantified based on a species trait matrix, consumer density and biomass. Our models also accounted for variability related to different litter resources, and other sources of biotic and abiotic variability among streams. All three of our focal biotic drivers influenced leaf decomposition, but none was important in all habitats and seasons. Functional diversity had contrasting effects on decomposition between habitats and seasons. A positive relationship was observed in pool habitats in spring, associated with high trait dispersion, whereas a negative relationship was observed in riffle habitats during autumn. Our results demonstrate that functional biodiversity can be as significant for functioning in natural ecosystems as other important biotic drivers. In particular, variation in the role of functional diversity between seasons highlights the importance of fluctuations in the relative abundances of traits for ecosystem process rates in real ecosystems.


Assuntos
Biodiversidade , Ecossistema , Insetos/fisiologia , Rios , Análise de Variância , Animais , Biomassa , Comportamento Alimentar , Modelos Biológicos , Folhas de Planta , Estações do Ano , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...