Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(11): e2309387, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200672

RESUMO

Over the past decades, the development of nanoparticles (NPs) to increase the efficiency of clinical treatments has been subject of intense research. Yet, most NPs have been reported to possess low efficacy as their actuation is hindered by biological barriers. For instance, synovial fluid (SF) present in the joints is mainly composed of hyaluronic acid (HA). These viscous media pose a challenge for many applications in nanomedicine, as passive NPs tend to become trapped in complex networks, which reduces their ability to reach the target location. This problem can be addressed by using active NPs (nanomotors, NMs) that are self-propelled by enzymatic reactions, although the development of enzyme-powered NMs, capable of navigating these viscous environments, remains a considerable challenge. Here, the synergistic effects of two NMs troops, namely hyaluronidase NMs (HyaNMs, Troop 1) and urease NMs (UrNMs, Troop 2) are demonstrated. Troop 1 interacts with the SF by reducing its viscosity, thus allowing Troop 2 to swim more easily through the SF. Through their collective motion, Troop 2 increases the diffusion of macromolecules. These results pave the way for more widespread use of enzyme-powered NMs, e.g., for treating joint injuries and improving therapeutic effectiveness compared with traditional methods.


Assuntos
Nanopartículas , Viscosidade , Substâncias Macromoleculares
2.
Biotechnol Adv ; 68: 108212, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37454745

RESUMO

The last decade has witnessed great progress in the field of adoptive cell therapies, with the authorization of Kymriah (tisagenlecleucel) in 2017 by the Food and Drug Administration (FDA) as a crucial stepstone. Since then, five more CAR-T therapies have been approved for the treatment of hematological malignancies. While this is a great step forward to treating several types of blood cancers, CAR-T cell therapies are still associated with severe side-effects such as Graft-versus-Host Disease (GvHD), cytokine release syndrome (CRS) and neurotoxicity. Because of this, there has been continued interest in Natural Killer cells which avoid these side-effects while offering the possibility to generate allogeneic cell therapies. Similar to T-cells, NK cells can be genetically modified to improve their therapeutic efficacy in a variety of ways. In contrast to T cells, viral transduction of NK cells remains inefficient and induces cytotoxic effects. Viral vectors also require a lengthy and expensive product development process and are accompanied by certain risks such as insertional mutagenesis. Therefore, non-viral transfection technologies are avidly being developed aimed at addressing these shortcomings of viral vectors. In this review we will present an overview of the potential of NK cells in cancer immunotherapies and the non-viral transfection technologies that have been explored to engineer them.


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Células Matadoras Naturais/metabolismo , Linfócitos T , Imunoterapia Adotiva , Neoplasias/terapia , Imunoterapia
3.
ACS Nano ; 17(8): 7180-7193, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058432

RESUMO

Targeted drug delivery depends on the ability of nanocarriers to reach the target site, which requires the penetration of different biological barriers. Penetration is usually low and slow because of passive diffusion and steric hindrance. Nanomotors (NMs) have been suggested as the next generation of nanocarriers in drug delivery due to their autonomous motion and associated mixing hydrodynamics, especially when acting collectively as a swarm. Here, we explore the concept of enzyme-powered NMs designed as such that they can exert disruptive mechanical forces upon laser irradiation. The urease-powered motion and swarm behavior improve translational movement compared to passive diffusion of state-of-the-art nanocarriers, while optically triggered vapor nanobubbles can destroy biological barriers and reduce steric hindrance. We show that these motors, named Swarm 1, collectively displace through a microchannel blocked with type 1 collagen protein fibers (barrier model), accumulate onto the fibers, and disrupt them completely upon laser irradiation. We evaluate the disruption of the microenvironment induced by these NMs (Swarm 1) by quantifying the efficiency by which a second type of fluorescent NMs (Swarm 2) can move through the cleared microchannel and be taken up by HeLa cells at the other side of the channel. Experiments showed that the delivery efficiency of Swarm 2 NMs in a clean path was increased 12-fold in the presence of urea as fuel compared to when no fuel was added. When the path was blocked with the collagen fibers, delivery efficiency dropped considerably and only depicted a 10-fold enhancement after pretreatment of the collagen-filled channel with Swarm 1 NMs and laser irradiation. The synergistic effect of active motion (chemically propelled) and mechanical disruption (light-triggered nanobubbles) of a biological barrier represents a clear advantage for the improvement of therapies which currently fail due to inadequate passage of drug delivery carriers through biological barriers.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Células HeLa
4.
Acc Chem Res ; 56(6): 631-643, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36892059

RESUMO

Delivering biological effector molecules in cultured cells is of fundamental importance to any study or application in which the modulation of gene expression is required. Examples range from generating engineered cell lines for studying gene function to the engineering of cells for cell-based therapies such as CAR-T cells and gene-corrected stem cells for regenerative medicine. It remains a great challenge, however, to deliver biological effector molecules across the cell membrane with minimal adverse effects on cell viability and functionality. While viral vectors have been frequently used to introduce foreign nucleic acids into cells, their use is associated with safety concerns such as immunogenicity, high manufacturing cost, and limited cargo capacity.For photoporation, depending on the laser energy, membrane permeabilization happens either by local heating or by laser-induced water vapor nanobubbles (VNB). In our first study on this topic, we demonstrated that the physical force exerted by suddenly formed VNB leads to more efficient intracellular delivery as compared to mere heating. Next, we explored the use of different photothermal nanomaterials, finding that graphene quantum dots display enhanced thermal stability compared to the more traditionally used gold nanoparticles, hence providing the possibility to increase the delivery efficiency by repeated laser activation. To enable its use for the production of engineered therapeutic cells, it would be better if contact with cells with nondegradable nanoparticles is avoided as it poses toxicity and regulatory concerns. Therefore, we recently demonstrated that photoporation can be performed with biodegradable polydopamine nanoparticles as well. Alternatively, we demonstrated that nanoparticle contact can be avoided by embedding the photothermal nanoparticles in a substrate made from biocompatible electrospun nanofibers. With this variety of photoporation approaches, over the years we demonstrated the successful delivery of a broad variety of biologics (mRNA, siRNA, Cas9 ribonucleoproteins, nanobodies, etc.) in many different cell types, including hard-to-transfect cells such as T cells, embryonic stem cells, neurons, and macrophages.In this Account, we will first start with a brief introduction of the general concept and a historical development of photoporation. In the next two sections, we will extensively discuss the various types of photothermal nanomaterials which have been used for photoporation. We discriminate two types of photothermal nanomaterials: single nanostructures and composite nanostructures. The first one includes examples such as gold nanoparticles, graphene quantum dots, and polydopamine nanoparticles. The second type includes polymeric films and nanofibers containing photothermal nanoparticles as well as composite nanoscale biolistic nanostructures. A thorough discussion will be given for each type of photothermal nanomaterial, from its synthesis and characterization to its application in photoporation, with its advantages and disadvantages. In the final section, we will provide an overall discussion and elaborate on future perspectives.


Assuntos
Grafite , Nanopartículas Metálicas , Nanoestruturas , Pontos Quânticos , Nanopartículas Metálicas/química , Ouro/química , Grafite/química
5.
Mol Ther Nucleic Acids ; 29: 871-899, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36159590

RESUMO

Skin injuries and chronic non-healing wounds are one of the major global burdens on the healthcare systems worldwide due to their difficult-to-treat nature, associated co-morbidities, and high health care costs. Angiogenesis has a pivotal role in the wound-healing process, which becomes impaired in many chronic non-healing wounds, leading to several healing disorders and complications. Therefore, induction or promotion of angiogenesis can be considered a promising approach for healing of chronic wounds. Gene therapy is one of the most promising upcoming strategies for the treatment of chronic wounds. It can be classified into three main approaches: gene augmentation, gene silencing, and gene editing. Despite the increasing number of encouraging results obtained using nucleic acids (NAs) as active pharmaceutical ingredients of gene therapy, efficient delivery of NAs to their site of action (cytoplasm or nucleus) remains a key challenge. Selection of the right therapeutic cargo and delivery methods is crucial for a favorable prognosis of the healing process. This article presents an overview of gene therapy and non-viral delivery methods for angiogenesis induction in chronic wounds.

6.
Mol Ther ; 30(9): 2891-2908, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35918892

RESUMO

It is well established that macrophages are key regulators of wound healing, displaying impressive plasticity and an evolving phenotype, from an aggressive pro-inflammatory or "M1" phenotype to a pro-healing or "M2" phenotype, depending on the wound healing stage, to ensure proper healing. Because dysregulated macrophage responses have been linked to impaired healing of diabetic wounds, macrophages are being considered as a therapeutic target for improved wound healing. In this review, we first discuss the role of macrophages in a normal skin wound healing process and discuss the aberrations that occur in macrophages under diabetic conditions. Next we provide an overview of recent macrophage-based therapeutic approaches, including delivery of ex-vivo-activated macrophages and delivery of pharmacological strategies aimed at eliminating or re-educating local skin macrophages. In particular, we focus on strategies to silence key regulator genes to repolarize wound macrophages to the M2 phenotype, and we provide a discussion of their potential future clinical translation.


Assuntos
Diabetes Mellitus Experimental , Animais , Macrófagos , Fenótipo , Pele/lesões , Cicatrização/fisiologia
7.
Nat Commun ; 13(1): 1996, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422038

RESUMO

Biolistic intracellular delivery of functional macromolecules makes use of dense microparticles which are ballistically fired onto cells with a pressurized gun. While it has been used to transfect plant cells, its application to mammalian cells has met with limited success mainly due to high toxicity. Here we present a more refined nanotechnological approach to biolistic delivery with light-triggered self-assembled nanobombs (NBs) that consist of a photothermal core particle surrounded by smaller nanoprojectiles. Upon irradiation with pulsed laser light, fast heating of the core particle results in vapor bubble formation, which propels the nanoprojectiles through the cell membrane of nearby cells. We show successful transfection of both adherent and non-adherent cells with mRNA and pDNA, outperforming electroporation as the most used physical transfection technology by a factor of 5.5-7.6 in transfection yield. With a throughput of 104-105 cells per second, biolistic delivery with NBs offers scalable and highly efficient transfections of mammalian cells.


Assuntos
Biolística , Nanotecnologia , Animais , Biolística/métodos , Substâncias Macromoleculares , Mamíferos , Células Vegetais , Transfecção
9.
Nat Nanotechnol ; 17(5): 552-559, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35302088

RESUMO

In myopia, diabetes and ageing, fibrous vitreous liquefaction and degeneration is associated with the formation of opacities inside the vitreous body that cast shadows on the retina, appearing as 'floaters' to the patient. Vitreous opacities degrade contrast sensitivity function and can cause notable impairment in vision-related quality of life. Here we introduce 'nanobubble ablation' for safe destruction of vitreous opacities. Following intravitreal injection, hyaluronic acid-coated gold nanoparticles and indocyanine green, which is widely used as a dye in vitreoretinal surgery, spontaneously accumulate on collagenous vitreous opacities in the eyes of rabbits. Applying nanosecond laser pulses generates vapour nanobubbles that mechanically destroy the opacities in rabbit eyes and in patient specimens. Nanobubble ablation might offer a safe and efficient treatment to millions of patients suffering from debilitating vitreous opacities and paves the way for a highly safe use of pulsed lasers in the posterior segment of the eye.


Assuntos
Oftalmopatias , Nanopartículas Metálicas , Animais , Oftalmopatias/cirurgia , Ouro , Humanos , Lasers , Qualidade de Vida , Coelhos , Vitrectomia , Corpo Vítreo/cirurgia
10.
Nat Nanotechnol ; 16(11): 1281-1291, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675410

RESUMO

Nanoparticle-sensitized photoporation is an upcoming approach for the intracellular delivery of biologics, combining high efficiency and throughput with excellent cell viability. However, as it relies on close contact between nanoparticles and cells, its translation towards clinical applications is hampered by safety and regulatory concerns. Here we show that light-sensitive iron oxide nanoparticles embedded in biocompatible electrospun nanofibres induce membrane permeabilization by photothermal effects without direct cellular contact with the nanoparticles. The photothermal nanofibres have been successfully used to deliver effector molecules, including CRISPR-Cas9 ribonucleoprotein complexes and short interfering RNA, to adherent and suspension cells, including embryonic stem cells and hard-to-transfect T cells, without affecting cell proliferation or phenotype. In vivo experiments furthermore demonstrated successful tumour regression in mice treated with chimeric antibody receptor T cells in which the expression of programmed cell death protein 1 (PD1) is downregulated after nanofibre photoporation with short interfering RNA to PD1. In conclusion, cell membrane permeabilization with photothermal nanofibres is a promising concept towards the safe and more efficient production of engineered cells for therapeutic applications, including stem cell or adoptive T cell therapy.


Assuntos
Imunoterapia Adotiva , Nanopartículas/química , Neoplasias/terapia , RNA Interferente Pequeno/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Sobrevivência Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Células MCF-7 , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Nanofibras/química , Nanopartículas/uso terapêutico , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Transfecção
11.
Nanoscale ; 13(40): 17049-17056, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34622916

RESUMO

Nanoparticle-sensitized photoporation for intracellular delivery of external compounds usually relies on the use of spherical gold nanoparticles as sensitizing nanoparticles. As they need stimulation with visible laser light, they are less suited for transfection of cells in thick biological tissues. In this work, we have explored black phosphorus quantum dots (BPQDs) as alternative sensitizing nanoparticles for photoporation with a broad and uniform absorption spectrum from the visible to the near infra-red (NIR) range. We demonstrate that BPQD sensitized photoporation allows efficient intracellular delivery of both siRNA (>80%) and mRNA (>40%) in adherent cells as well as in suspension cells. Cell viability remained high (>80%) irrespective of whether irradiation was performed with visible (532 nm) or near infrared (800 nm) pulsed laser light. Finally, as a proof of concept, we used BPQD sensitized photoporation to deliver macromolecules in cells with thick phantom tissue in the optical path. NIR laser irradiation resulted in only 1.3× reduction in delivery efficiency as compared to photoporation without the phantom gel, while with visible laser light the delivery efficiency was reduced 2×.


Assuntos
Ouro , Nanopartículas Metálicas , Substâncias Macromoleculares , Fósforo , RNA Interferente Pequeno
12.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502144

RESUMO

Impaired wound healing in people with diabetes has multifactorial causes, with insufficient neovascularization being one of the most important. Hypoxia-inducible factor-1 (HIF-1) plays a central role in the hypoxia-induced response by activating angiogenesis factors. As its activity is under precise regulatory control of prolyl-hydroxylase domain 2 (PHD-2), downregulation of PHD-2 by small interfering RNA (siRNA) could stabilize HIF-1α and, therefore, upregulate the expression of pro-angiogenic factors as well. Intracellular delivery of siRNA can be achieved with nanocarriers that must fulfill several requirements, including high stability, low toxicity, and high transfection efficiency. Here, we designed and compared the performance of layer-by-layer self-assembled siRNA-loaded gold nanoparticles with two different outer layers-Chitosan (AuNP@CS) and Poly L-arginine (AuNP@PLA). Although both formulations have exactly the same core, we find that a PLA outer layer improves the endosomal escape of siRNA, and therefore, transfection efficiency, after endocytic uptake in NIH-3T3 cells. Furthermore, we found that endosomal escape of AuNP@PLA could be improved further when cells were additionally treated with desloratadine, thus outperforming commercial reagents such as Lipofectamine® and jetPRIME®. AuNP@PLA in combination with desloratadine was proven to induce PHD-2 silencing in fibroblasts, allowing upregulation of pro-angiogenic pathways. This finding in an in vitro context constitutes a first step towards improving diabetic wound healing with siRNA therapy.


Assuntos
Indutores da Angiogênese/metabolismo , Angiopatias Diabéticas/metabolismo , Ouro , Hipóxia/metabolismo , Lisossomos , Nanopartículas , RNA Interferente Pequeno/genética , Animais , Sobrevivência Celular , Fenômenos Químicos , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/patologia , Composição de Medicamentos , Endossomos/metabolismo , Técnicas de Transferência de Genes , Hipóxia/genética , Loratadina/análogos & derivados , Loratadina/química , Loratadina/farmacologia , Camundongos , Células NIH 3T3 , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem
13.
Nanoscale ; 13(36): 15445-15463, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34505619

RESUMO

Excessive inflammatory responses in wounds are characterized by the presence of high levels of pro-inflammatory M1 macrophages rather than pro-healing M2 macrophages, which leads to delayed wound healing. Macrophage reprogramming from the M1 to M2 phenotype through knockdown of interferon regulatory factor 5 (irf5) has emerged as a possible therapeutic strategy. While downregulation of irf5 could be achieved by siRNA, it very much depends on successful intracellular delivery by suitable siRNA carriers. Here, we report on highly stable selenium-based layer-by-layer (LBL) nanocomplexes (NCs) for siRNA delivery with polyethyleneimine (PEI-LBL-NCs) as the final polymer layer. PEI-LBL-NCs showed good protection of siRNA with only 40% siRNA release in a buffer of pH = 8.5 after 72 h or in simulated wound fluid after 4 h. PEI-LBL-NCs also proved to be able to transfect RAW 264.7 cells with irf5-siRNA, resulting in successful reprogramming to the M2 phenotype as evidenced by a 3.4 and 2.6 times decrease in NOS-2 and TNF-α mRNA expression levels, respectively. Moreover, irf5-siRNA transfected cells exhibited a 2.5 times increase of the healing mediator Arg-1 and a 64% increase in expression of the M2 cell surface marker CD206+. Incubation of fibroblast cells with conditioned medium isolated from irf5-siRNA transfected RAW 264.7 cells resulted in accelerated wound healing in an in vitro scratch assay. These results show that irf5-siRNA loaded PEI-LBL-NCs are a promising therapeutic approach to tune macrophage polarization for improved wound healing.


Assuntos
Ativação de Macrófagos , Macrófagos , Fenótipo , RNA Interferente Pequeno/genética , Cicatrização/genética
14.
Mol Ther Nucleic Acids ; 25: 696-707, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34589287

RESUMO

The CRISPR-Cas9 technology represents a powerful tool for genome engineering in eukaryotic cells, advancing both fundamental research and therapeutic strategies. Despite the enormous potential of the technology, efficient and direct intracellular delivery of Cas9 ribonucleoprotein (RNP) complexes in target cells poses a significant hurdle, especially in refractive primary cells. In the present work, vapor nanobubble (VNB) photoporation was explored for Cas9 RNP transfection in a variety of cell types. Proof of concept was first demonstrated in H1299-EGFP cells, before proceeding to hard-to-transfect stem cells and T cells. Gene knock-out levels over 80% and up to 60% were obtained for H1299 cells and mesenchymal stem cells, respectively. In these cell types, the unique possibility of VNB photoporation to knock out genes according to user-defined spatial patterns was demonstrated as well. Next, effective targeting of the programmed cell death 1 receptor and Wiskott-Aldrich syndrome gene in primary human T cells was demonstrated, reaching gene knock-out levels of 25% and 34%, respectively. With a throughput of >200,000 T cells per second, VNB photoporation is a scalable and versatile intracellular delivery method that holds great promise for CRISPR-Cas9-mediated ex vivo engineering of cell therapy products.

15.
Front Mol Biosci ; 8: 639184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959633

RESUMO

Nanotechnology has made an important contribution to oncology in recent years, especially for drug delivery. While many different nano-delivery systems have been suggested for cancer therapy, selenium nanoparticles (SeNPs) are particularly promising anticancer drug carriers as their core material offers interesting synergistic effects to cancer cells. Se compounds can exert cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis, eventually leading to apoptosis induction in many kinds of cancer cells. Herein, we report on the design and synthesis of novel layer-by-layer Se-based nanocomplexes (LBL-Se-NCs) as carriers of small interfering RNA (siRNA) for combined gene silencing and apoptosis induction in cancer cells. The LBL-Se-NCs were prepared using a straightforward electrostatic assembly of siRNA and chitosan (CS) on the solid core of the SeNP. In this study, we started by investigating the colloidal stability and protection of the complexed siRNA. The results show that CS not only functioned as an anchoring layer for siRNA, but also provided colloidal stability for at least 20 days in different media when CS was applied as a third layer. The release study revealed that siRNA remained better associated with LBL-Se-NCs, with only a release of 35% after 7 days, as compared to CS-NCs with a siRNA release of 100% after 48 h, making the LBL nanocarrier an excellent candidate as an off-the-shelf formulation. When applied to H1299 cells, it was found that they can selectively induce around 32% apoptosis, while significantly less apoptosis (5.6%) was induced in NIH/3T3 normal cells. At the same time, they were capable of efficiently inducing siRNA downregulation (35%) without loss of activity 7 days post-synthesis. We conclude that LBL-Se-NCs are promising siRNA carriers with enhanced stability and with a dual mode of action against cancer cells.

16.
Nanoscale ; 13(13): 6592-6604, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33885539

RESUMO

Inflammasomes are multi-protein complexes that guard against cellular stress and microbial infections. Inflammasome activation studies frequently require delivery of pathogen-derived virulence factors into the cytosol of macrophages and other innate immune cells. This is a challenging requirement since primary macrophages are difficult-to-transfect, especially when it comes to the intracellular delivery of proteins. Here, we report on the use of nanoparticle-sensitized photoporation as a promising upcoming intracellular delivery technology for delivering proteins of various molecular weights into the cytosol of primary macrophages. While 60-70 nm gold nanoparticles are the most commonly used sensitizing nanoparticles for photoporation, here we find that 0.5 µm iron oxide nanoparticles perform markedly better on primary macrophages. We demonstrate that LFn-FlaA or lipopolysaccharides can be delivered in primary macrophages resulting in activation of the NLRC4 or the non-canonical inflammasome, respectively. We furthermore show that photoporation can be used for targeted delivery of these toxins into selected cells, opening up the possibility to study the interaction between inflammasome activated cells and surrounding healthy cells. Taken together, these results show that nanoparticle-sensitized photoporation is very well suited to deliver pathogenic virulence factors in primary macrophages, thus constituting an effective new enabling technology for inflammasome activation studies.


Assuntos
Inflamassomos , Nanopartículas Metálicas , Ouro , Lipopolissacarídeos , Macrófagos , Nanopartículas Metálicas/toxicidade
17.
Biomater Sci ; 9(11): 4005-4018, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33899850

RESUMO

Longitudinal in vivo monitoring of transplanted cells is crucial to perform cancer research or to assess the treatment outcome of cell-based therapies. While several bio-imaging techniques can be used, magnetic resonance imaging (MRI) clearly stands out in terms of high spatial resolution and excellent soft-tissue contrast. However, MRI suffers from low sensitivity, requiring cells to be labeled with high concentrations of contrast agents. An interesting option is to label cells with clinically approved gadolinium chelates which generate a hyperintense MR signal. However, spontaneous uptake of the label via pinocytosis results in its endosomal sequestration, leading to quenching of the T1-weighted relaxation. To avoid this quenching effect, delivery of gadolinium chelates directly into the cytosol via electroporation or hypotonic cell swelling have been proposed. However, these methods are also accompanied by several drawbacks such as a high cytotoxicity, and changes in gene expression and phenotype. Here, we demonstrate that nanoparticle-sensitized laser induced photoporation forms an attractive alternative to efficiently deliver the contrast agent gadobutrol into the cytosol of both HeLa and SK-OV-3 IP1 cells. After intracellular delivery by photoporation the quenching effect is clearly avoided, leading to a strong increase in the hyperintense T1-weighted MR signal. Moreover, when compared to nucleofection as a state-of-the-art electroporation platform, photoporation has much less impact on cell viability, which is extremely important for reliable cell tracking studies. Additional experiments confirm that photoporation does not induce any change in the long-term viability or the migratory capacity of the cells. Finally, we show that gadolinium 'labeled' SK-OV-3 IP1 cells can be imaged in vivo by MRI with high soft-tissue contrast and spatial resolution, revealing indications of potential tumor invasion or angiogenesis.


Assuntos
Gadolínio , Neoplasias , Rastreamento de Células , Meios de Contraste , Citosol , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem
18.
Nanoscale Horiz ; 6(6): 449-461, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33903870

RESUMO

Common in myopia and aging, vitreous opacities arise from clumped collagen fibers within the vitreous body that cast shadows on the retina, appearing as 'floaters' to the patient. Vitreous opacities degrade contrast sensitivity function and can cause significant impairment in vision-related quality-of-life, representing an unmet and underestimated medical need. One therapeutic approach could be the use of versatile light-responsive nanostructures which (i) interfere with the formation of collagen fibers and/or (ii) destroy aggregates of vitreous collagen upon pulsed-laser irradiation at low fluences. In this work, the potential of positively and negatively charged carbon quantum dots (CQDs) to interfere with the aggregation of type I collagen is investigated. We demonstrate that fibrillation of collagen I is prevented most strongly by positively charged CQDs (CQDs-2) and that pulsed-laser illumination allowed to destroy type I collagen aggregates and vitreous opacities (as obtained from patients after vitrectomy) treated with CQDs-2.


Assuntos
Pontos Quânticos , Corpo Vítreo , Carbono , Humanos , Transtornos da Visão , Vitrectomia
19.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467656

RESUMO

Delivery of small interfering RNA (siRNA) provides one of the most powerful strategies for downregulation of therapeutic targets. Despite the widely explored capabilities of this strategy, intracellular delivery is hindered by a lack of carriers that have high stability, low toxicity and high transfection efficiency. Here we propose a layer by layer (LBL) self-assembly method to fabricate chitosan-coated gold nanoparticles (CS-AuNPs) as a more stable and efficient siRNA delivery system. Direct reduction of HAuCl4 in the presence of chitosan led to the formation of positively charged CS-AuNPs, which were subsequently modified with a layer of siRNA cargo molecules and a final chitosan layer to protect the siRNA and to have a net positive charge for good interaction with cells. Cytotoxicity, uptake, and downregulation of enhanced Green Fluorescent Protein (eGFP) in H1299-eGFP lung epithelial cells indicated that LBL-CS-AuNPs provided excellent protection of siRNA against enzymatic degradation, ensured good uptake in cells by endocytosis, facilitated endosomal escape of siRNA, and improved the overall silencing effect in comparison with commercial transfection reagents Lipofectamine and jetPEI®. Therefore, this work shows that LBL assembled CS-AuNPs are promising nanocarriers for enhanced intracellular siRNA delivery and silencing.


Assuntos
Quitosana/química , Sistemas de Liberação de Medicamentos , Ouro/química , Nanopartículas Metálicas/química , RNA Interferente Pequeno/metabolismo , Biopolímeros/química , Linhagem Celular Tumoral , Sobrevivência Celular , Endocitose , Endossomos/metabolismo , Inativação Gênica , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/química , Humanos , Lipídeos/química , Microscopia Confocal , RNA/metabolismo
20.
Small ; 16(22): e2000146, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32351015

RESUMO

Extrinsic probes have outstanding properties for intracellular labeling to visualize dynamic processes in and of living cells, both in vitro and in vivo. Since extrinsic probes are in many cases cell-impermeable, different biochemical, and physical approaches have been used to break the cell membrane barrier for direct delivery into the cytoplasm. In this Review, these intracellular delivery strategies are discussed, briefly explaining the mechanisms and how they are used for live-cell labeling applications. Methods that are discussed include three biochemical agents that are used for this purpose-purpose-different nanocarriers, cell penetrating peptides and the pore-foraming bacterial toxin streptolysin O. Most successful intracellular label delivery methods are, however, based on physical principles to permeabilize the membrane and include electroporation, laser-induced photoporation, micro- and nanoinjection, nanoneedles or nanostraws, microfluidics, and nanomachines. The strengths and weaknesses of each strategy are discussed with a systematic comparison provided. Finally, the extrinsic probes that are reported for intracellular labeling so-far are summarized, together with the delivery strategies that are used and their performance. This combined information should provide for a useful guide for choosing the most suitable delivery method for the desired probes.


Assuntos
Peptídeos Penetradores de Células , Membrana Celular , Citoplasma , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...